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Introduction
Melatonin is a highly pleiotropic regulator that exerts effects in 

the majority of mammalian cells. In the pineal gland, it is mainly 
synthesized at night, released to the circulation and, via the 
pineal recess, into the third ventricle of the brain. It transmits the 
information ‘darkness’ to peripheral organs and to brain areas as 
well. This association with darkness already implies a profound 
difference between nocturnally active rodents and day active 
species such as the human. In rats and mice, high melatonin is 
related to enhanced alertness, locomotor activity and food intake, 
whereas the opposite is the case in humans, in whom melatonin acts 
as a sleep-promoting compound. The correlation with darkness is, 
except for the retina, either absent or less expressed in melatonin 
synthesized in extrapineal sites. Concerning immunological actions 
of melatonin, the gastrointestinal tract (GIT) and leukocyte subtypes 
are of particular interest, because they synthesize melatonin and 
express melatonin receptors [1]. Notably, the amounts present in 
the GIT are about 400 – 500 times higher than in the pineal gland 
and in the circulation. Functions of extrapineal melatonin have 
been poorly considered in the context of drug development. 

The short half life of melatonin in the circulation (20 - 30, 
maximally 45 min) has prompted investigators to develop synthetic 
melatonergic agonists with longer persistence in the blood [2-6]. 
Additionally, the various synthetic agonists differ with regard to 
receptor affinity and receptor subtype specificity. However, most  

 
clinical studies on these compounds have focused on applications 
in sleep promotion [2-4,7] and, partially, treatment of depression 
[8,9]. 

Pro- or Antiinflammatory Actions
With regard to the two critical points addressed in this article, 

namely, (a) the anti-/pro-inflammatory balance and (b) glucose 
tolerance, immunological and diabetes-related effects shall be 
particularly considered. In leukocyte preparations or cultures of 
transformed myeloid or lymphocytic cell lines, melatonin induced 
mostly proinflammatory responses [10,11]. Prevailing effects 
consisted in up regulation of the proinflammatory cytokines 
IL-1β, IL-2, IL-6, IL-8, IL-12, IFNγ, and TNFα, down regulation 
of the antiinflammatory cytokine IL-10, and, in monocytes, 
strongly enhanced production of reactive oxygen species. 
These findings, which imply a prooxidative role by stimulating 
inflammation, markedly contrast with the otherwise well-
documented antioxidative properties of melatonin [1,12]. However, 
antiinflammatory actions of melatonin have been also reported 
[13,14]. 

These were particularly observed in response to strong 
inflammatory insults, such as endotoxemia and sepsis, and 
comprised down regulation of proinflammatory mediators, 
cytokines as well as NO and prostaglandins. Additionally, decreases 
of mitochondrial electron leakage reduced the inflammation-
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enhancing damage by free radicals. Effects included up regulation 
of respirasomal subunits, enhancement of reduced glutathione 
and glutathione peroxidase-4, and decreases of reactive nitrogen 
species, especially peroxynitrite [12-14]. Antiiflammatory actions 
were especially reported for various tissues of senescent rodents, 
including down regulation of IL-1β, IL-6 and TNFα as well as up 
regulation of IL-10. These changes were associated with reduced 
expression of iNOS (inducible NO synthase) and up regulation of 
the antiaging factor sirtuin 1 (SIRT1). These findings indicate a 
role of melatonin in counteracting inflammaging [12-14]. However, 
a problematic proinflammatory effect remains especially in 
humans, namely, the observed aggravation of arthritis [15,16]. The 
contrasting effects of melatonin under different conditions remain 
to be clarified in detail.

Contrasting findings concerning type 2 diabetes
Up regulation of SIRT1 by melatonin was described in the 

gerontological context, contrary to findings in tumor cells [17]. 
These results are of importance insofar as SIRT1 is also an 
amplitude-enhancing accessory component of both central and 
peripheral cellular circadian oscillators. Circadian amplitudes 
including that of the melatonin rhythm typically decline during 
aging [17]. Moreover, SIRT1 was reported to counteract insulin 
resistance [17,18] and to possess antiinflammatory properties [19]. 
These associations of melatonin with SIRT1 contrast with reports 
on prodiabetic actions of melatonin in humans [20,21]. 

As recently discussed [17], these findings in humans are 
at variance with numerous preclinical results on antidiabetic 
actions in rodents. It seems important to be aware of the above-
mentioned differences between humans and nocturnal animals 
concerning the association of melatonin with phases of food intake. 
In humans, melatonin was shown to decrease glucose tolerance, 
and this was aggravated in carriers of a prodiabetic risk allele of the 
gene of the melatonin receptor MT2 (G allele of MTNR1B carrying 
the SNP rs10830963) [22], which is notably over expressed in 
beta cells [20,21]. However, the situation turns out to be more 
complicated, as dysfunctional MTNR1B alleles are also prodiabetic, 
as type 2 diabetes is associated with decreases in melatonin, and 
as the strong up regulation of the G allele is typically observed in 
midlife, when both melatonin and circadian amplitudes are already 
substantially decreased, especially in the prediabetic state. These 
declines have been recently discussed in terms of possible causes 
of the diabetogenic G allele up regulation [17]. 

Conclusion
Considerations on receptor subtype selectivity

The use of synthetic melatonergic drugs has to consider 
these problems of poor translatability from rodents to humans. 
Caution is due especially in elderly patients, which may suffer 
from comorbidities such as (a) arthritis or other autoimmune 
diseases, or (b) diabetes, prediabetic states or metabolic syndrome. 
Moreover, the suitability of a melatonergic agonist may depend 
on its relative affinity to the two main receptors, MT1 and MT2 
(encoded by MTNR1A and MTNR1B genes, respectively). As far as 
the immune system is concerned, the prevailing receptor subtype is 

MT1 [1]. Proinflammatory complications may be reduced if agonists 
are used that preferentially act via the MT2 receptor. 

Apart from the demand that such a better suitability in 
humans remains to be clinically proven, one has also to take into 
account a difference between most laboratory rodents and the 
human concerning the receptor subtypes involved in circadian 
resetting by melatonergic agonists. In most but not all rodents, 
MT2 is involved in the resetting of the circadian clock, whereas 
this subtype is much less expressed in the human circadian master 
clock, the suprachiasmatic nucleus (SCN), in which this function is 
largely taken over by MT1 [1]. As far as circadian entrainment is 
desired to reduce sleep difficulties or psychiatric problems related 
to circadian misalignment, a preferentially MT2-selective agonist 
should be expected to fail. On the other hand, the role of MT2 over 
expression in type 2 diabetes may be taken as a hint to test MT1-
selective agonists in patients with a diabetic risk. 
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