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Introduction

Lasers have become extremely important either as an adjunct 
tool or a treatment devices in dental field. They have a variety of 
applications both in soft and hard dental tissue treatments. It is 
therefore crucial for the clinician to have an understanding of laser 
basics. In 1956, Thomas Maiman exposed an extracted natural 
tooth to his prototype Ruby (694 nm) laser; the nature of the 
wavelength and target chromophore, together with the laser power 
resulted in charring of the hard tissue element and transmission 
of laser energy to the tooth pulp [1]. Following the early clinical 
experiences of Goldman and others such as Polanyi and Jako in 
the 1960s, the development of Argon, Neodymium (Nd) YAG and 
Carbon Dioxide lasers in general areas of surgery led to a gradual 
introduction of these wavelengths in surgical procedures in the 
mouth. These early lasers have continuous-wave emission mode, 
which gave rise to potential for conductive heat damage. This was 
addressed by the introduction of pulsed-emission lasers, which 
allowed selective destruction of abnormal or diseased tissue, while 
leaving surrounding normal tissue undisturbed. The first lasers to 
fully exploit this principal of ‘selective thermolysis’ were the pulsed 
dye lasers introduced in the late 1980s.

The possibilities for laser use in dentistry did not occur until 
1989, with the production of the American Dental Laser for 
commercial use. This laser, using an active medium of Nd: YAG [2]. 
The great advance for dental lasers came in the mid 1990s, with 
various laser types (Diode laser, Nd: YAG, Er, Cr: YSGG, Er: YAG,  
CO2) with corresponding wavelengths (810-890 nm, 1064 nm,  

 
2780 nm, 2940 nm, 10600 nm) becoming available to the dentists 
to address their needs for hard and soft tissue procedures. Soft 
tissue lasers [near infra red (NIR)] are characterized by a high 
absorption in chromophores (hemoglobin and melanin) found in 
soft tissue, resulting in excellent soft tissue incision, ablation and 
coagulation performance as well as antimicrobial effectiveness, due 
to relatively deep highly localized tissue heating. Hard tissue lasers 
[Far infra red (FIR)] (Figure 1) are highly absorbed in (carbonated) 
hydroxyapatite and water chromophores and are thus able to 
finely ablate hard tissues without heating of the surrounding tissue 
(Figures 1 & 2) [3].

Figure 1: Absorption coefficients of carbonated hydroxyapatite 
verses laser wavelength. The absorption peaks Represent 
component radicals of the molecule (hydroxyl, free-water, 
carbonate, phosphate). The dotted line represents the absorption 
of laser energy in whole water. 
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In 1989, experimental work by Keller and Hibst [4] using a 
pulsed Erbium YAG (2,940 nm) laser, demonstrated its effectiveness 
in cutting enamel, dentine and bone [4]. This laser became 
commercially available in 1995 and, shortly followed by a similar 
Er,Cr:YSGG (erbium chromium: yttrium scandiumgallium garnet - 
2,780 nm) laser in 1997, amounted to a laser armamentarium that 
would address the surgical needs of everyday dental hard tissue 
treatment (Figure 2).

Figure 2: Combined laser unit (Light Walker AT, Fotona, Slovenia) 
present two different wavelength sources and different delivery 
systems: two optic fibers for the Nd: YAG laser and one articulated arm 
for the Er: YAG laser.

Mechanism of Laser Production and Characteristic 
Properties of Laser Light

There are four properties that are common to all laser types:

Beam directionality (collimation) (Figure 3), Monochromaticity, 
Spatial and temporal coherence of the beam (Figure 4), and 
High intensity of the beam (Figures 3 & 4) [5]. The intensity, 
directionality, and monochromaticity of laser light allow the beam 
to be expanded, or focused quite easily [6].

Figure 3: The difference between collimated light (laser) and 
uncollimated light.

Figure 4: Laser light is monochromatic and coherent.

How Laser Light Is Produced (Figure 5)

Figure 5: Production of  laser

The amplification of light within the laser cavity sets laser 
light apart from other sources. For most visible light applications, 
laser represents a conversion from lamplight to an amplified 
monochromatic form [7]. The high power possible with lasers 
(especially peak power) is achieved through resonance in the 
laser cavity. The scientific principle on which lasers are based 
is stimulated emission. With spontaneous emission, electrons 
transition to the lower level in a random process. With stimulated 
emission, the emission occurs only in the presence of photons of a 
certain change. The critical point is maintaining a condition where 
the population of photons in a higher state is larger than that in the 
lower state. To create this population inversion, a pumping energy 
must be directed either with electricity, light, or chemical energy.

Laser - Tissue Interactions

Figure 6: Possible laser light - tissue interactions.
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In clinical dentistry, laser light is used to effect controlled 
and precise changes in target tissue, through the transfer of 
electromagnetic energy [8]. Light energy interacts with a target 
medium (e.g. oral tissue) in one of four ways [9] (Figure 6):

Reflection: When either the density of the medium or angle of 
incidence are less than the refractive angle, total reflection of the 
beam will occur. The incident and emergence angles of the laser 
beam will be the same for true reflection or some scatter may occur 
if the medium interface is non-homogenous or rough.

Transmission: Laser beam enters the medium and emerges 
distally without interacting with the medium. The beam exits either 
unchanged or partially refracted.

Scatter: There is interaction between the laser beam and the 
medium. This interaction is not intensive enough to cause complete 
attenuation of the beam. Result of light scattering is a decrease of 
laser energy with distance, together with a distortion in the beam 
(rays travel in an uncontrolled direction through the medium).

Absorption: The incident energy of the beam is absorbed 
by the medium and transferred into another form of energy. 
Absorption is the most important interaction. Each wavelength 
has specific chromophores that absorb their energy. This absorbed 
energy is converted into thermal and and/or mechanical energy 
that is used to perform the work desired. Near infrared lasers like 
diodes and Nd: YAGs are mostly absorbed by pigments such as 
hemoglobin and melanin. Erbium and CO2 lasers are predominantly 
absorbed by water, with erbium wavelengths also exhibiting some 
hydroxyapatite absorption [10,11]. 

Absorption requires an absorber of light, termed chromophores, 
which have a certain affinity for specific wavelengths of light. The 
primary chromophores in the intraoral soft tissue are [12]:

1. Melanin, 2. Hemoglobin, 3. Water, 4. and in dental hard tissues 
(Water & Hydroxyapatite), and 5. Phosensitive materials in visible 
light cured polymeric materials (Camphoroquinon & α Diketone).

Temperature Rise During Tissue Lasing [13] 

The most important and significant tissue alterations are 
dependent on the temperature of the tissue after absorption of the 
laser radiation, as follows:

At 37°C; no measurable effects are observed for the next 5°C 
above this.

The first mechanism by which tissue is thermally affected can 
be attributed to conformational changes of molecules. These effects, 
accompanied by bond destruction and membrane alterations due 
to hyperthermia at 42-50°C. If such a hyperthermia lasts for several 
minutes, a significant percentage of the tissue will already undergo 
necrosis.

At 60°C, denaturation of proteins and collagen occurs 
which leads to coagulation of tissue and necrosis of cells. The 
corresponding macroscopic response is the visible paling of the 
tissue. 

At higher temperatures (>80°C), the cell membrane 
permeability is drastically increased, thereby destroying the 
otherwise maintained equilibrium of chemical concentrations.

At 100°C, water molecules contained in most tissues start to 
vaporize. Due to the large increase in volume during this phase 
transition, gas bubbles are formed inducing mechanical ruptures 
and thermal decomposition of tissues.

At temperatures exceeding 150°C, carbonization takes place 
which is observable by the blackening of an adjacent tissue and the 
escape of smoke (plume).

Finally, melting may occur. The temperature must have reached 
a few hundred degrees Celsius to melt the tooth substance which 
mainly consists of hydroxyl apatite crystals (a chemical compound 
of calcium and phosphate).

The Erbium Laser Family

There are two distinct wavelengths that use erbium: Erbium, 
chromium: YSGG (2780 nm) has an active medium of a solid crystal 
of yttrium scandiumgallium garnet that is doped with erbium and 
chromium and Erbium: YAG (2940 nm) has an active medium of a 
solid crystal of yttrium aluminum garnet that is doped with erbium. 
Caries removal and tooth preparation are easily accomplished by 
both the lasers. The Er:YAG laser [14,15].

It has a number of advantages. It produces clean, sharp margins 
in enamel and dentin. In addition, pulpal safety is not a significant 
concern, because the depth of energy penetration is negligible. 
When the Er:YAG laser is used for caries removal, the patient 
usually does not require local anesthesia. The laser is antimicrobial 
when used within root canals and on root surfaces, and it removes 
endotoxins from root surfaces. Finally, vibration from the Er:YAG 
laser is less severe than that from the conventional high-speed drill, 
and it is less likely to provoke discomfortor pain. 

Lasers for Dental Hard Tissues and Mechanism of Action

The prime chromophore in current laser application with hard 
tissue is water; the absorption peak at around 3.0 mm wavelength 
identifies the Er:YAG and Er,Cr:YSGG wavelengths as the lasers of 
choice (Figure 2). The first dental laser - the Nd: YAG 1,064 nm - was 
marketed as being suitable in tooth cavity preparation - a claim that 
was quickly deemed to be erroneous for clinical relevance. Early 
research into this claim supported the ablative effect of the 1,064 
nm wavelength on accessible pigmented carious lesions, [16,17] 
but whenever healthy enamel and dentine was exposed to the laser 
energy, the comparatively long pulse width and associated heat 
transfer, combined with the lack of water spray resulted in thermal 
cracking and melting of hydroxyl apatite together with high intra-
pulpal temperature rise [18-20].

Although there is a high absorption peak of CO2 laser by 
carbonated hydroxyl apatite, its continuous wave emission of laser 
energy and lack of axial water coolant results in rapid carbonisation, 
cracking and melting of tooth tissue. Therefore the carbon dioxide 
wavelength is impractical for restorative dental procedures [21]. 
With the Erbium group of lasers the free-running micropulse 
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emission mode results in rapid and expansive vaporization of 
interstitial water and dissociation of the hydroxyl radical in the 
hydroxyl apatite crystal causing an explosive dislocation of the 
gross Structure [22,23].

Clinically, this is seen as ejection of micro-fragments of tooth 
tissue within the laser plume and the change in pressure in the 
immediately surrounding air results in an audible “popping” sound. 
In target tissue that has greater water content (caries > dentine > 
enamel), the popping sound is louder. With experience, this can 
aid the clinician in selectively ablating carious verses non-carious 
tissue. Compared to near infra-red wavelengths, the explosive 
outward effect of Erbium laser energy results in minimal thermal 
diffusion through the tooth structure. Co-axial with this laser is a 
water spray, to aid in dispersing ablation products and to provide 
cooling of the target site. The development of ultra-short pulse laser 
emissions of the Erbium group of wavelengths appears promising 
in reducing the conductive heat potential, whilst increasing the 
rates of tissue ablation. Nonetheless, both laser wavelengths allow 
cavity preparation within acceptable clinical parameters [24].

Er, YAG Laser Tissue Interaction

The Er:YAG laser was introduced in 1974 by Zharikov et al. as 
a solid-state laser that generates a pulsed laser with a wavelength 
of 2,940 nm. Of all lasers emitting in the near- and mid-infrared 
spectral range, the absorption of the Er:YAG laser in water is the 
greatest because its 2,940 nm wavelength (Figure 1) coincides with 
the large absorption band for water. The absorption coefficient 
of water of the Er:YAG laser is theoretically 10,000 and 15,000-
20,000 times higher than that of the CO2 and the Nd: YAG lasers, 
respectively. Since the Er:YAG laser is well absorbed by all biological 
tissues that contain water molecules, this laser is indicated not 
only for the treatment of soft tissues but also for ablation of hard 
tissues. The FDA approved the pulsed Er:YAG laser for hard tissue 
treatment such as caries removal and cavity preparation in 1997, 
for soft tissue surgery and sulcular debridement in 1999, and for 
osseous surgery in 2004 [25-27]. Therefore the affinity of the 
Er:YAG laser light to living tissue is extremely high and ablation of 
hard tissue as well as soft tissue is possible. The high absorption by 
water limits collateral thermal damage to the surrounding tissue. 
In the case of hard tissue, the amount of water contained within the 
tissue is small and heat generation is present but can be controlled 
with water irrigation [28].

Many systems used the irrigation water as the actual target, and 
eliminate the hard tissue through kinetic energy delivered by the 
microburst principle whereby the explosive force of vaporization 
of the thin film of water is transferred to the hard tissue, thereby 
ablating it. The thickness of the denatured layer of the root 
cementum and dentin following Er:YAG laser irradiation of the root 
surface under water irrigation is reported to be 5-15 μm [29-31]. 
The mechanism behind ablation is firstly through photothermal 
evaporation where the light energy is absorbed by water in the 
hard tissue itself and in other organic substances and secondly by 
the mechanical effect already mentioned, bringing about tissue 
ablation through the microburst principle, also known as the 
micro explosion concept where the water vapor pressure build-up 

created by the extremely violent evaporation of water exceeds the 
threshold of the tissue. Ablation by micro explosion is referred to as 
photomechanical ablation or thermo mechanical ablation [32,33]. 

Calculus is a multi-porous calcified substance, which contains 
water not only as a constituent of the substance but also within its 
pores. Hence, in normal biological conditions, calculus is one of the 
more easily ablated tissues using the Er: YAG. A more recent laser 
based on an Er, Cr: YSGG medium emits laser light similar to the 
Er:YAG laser at a wavelength of 2.78 μm, and has been reported to 
have similar efficacy concerning calculus removal [34].

Er YAG laser in Implant Dentistry and Bone Surgery

The Er:YAG laser offers significant advantages over other 
conventional osteotomy techniques like a noncontact intervention, 
no mechanical vibration, free and elaborate cut geometries and 
aseptic effects. The Er:YAG laser is a state of the art and innovative 
bone cutting technique with a high potential for future applications 
and trends in oral surgery and implant dentistry [35]. 

E YAG in Periodontal Treatment

Among all the lasers used in the field of dentistry, the Er:YAG 
laser has been reported to be the most promising laser for 
periodontal treatment [36]. Its excellent ability to effectively ablate 
hard tissues and dental calculus without producing major thermal 
side-effects to adjacent tissue has been demonstrated in numerous 
studies [37-40]. Scanning electron microscopy (SEM) observations 
from recent studies showed that the clinical use of an Er:YAG laser 
resulted in a smooth root surface morphology, even at higher 
energy settings [41-43]. Er:YAG lasers have been often discussed 
as a treatment options for removal of subgingival and peri-
implant biofilms; available evidence suggests that subgingival and 
submucosal debridement with Er:YAG laser treatment may reduce 
periodontal and peri-implant mucosal inflammation [44-46]. 
Ablation of subgingival biofilms and in particular decontamination 
of titanium implant surfaces with an Er:YAG laser seem to be a 
promising approach and warrants further investigations [47]. 

Er YAG Treatment of Sleep Apnea

It has been estimated that roughly 30% to 50% of the US 
population snore and almost 1/3 suffer from sleep apnea. However, 
only 5% have been diagnosed and treated [48-49]. Snoring and 
sleep apnea result from obstructed airways. This can be an outcome 
of many different factors such as anatomic deviations, tumors, 
polyps, allergy, large adenoids and tonsils, large uvula or a long soft 
palate [50-53]. Heavy snoring is sometimes called “heroic” snoring 
and may affect bed partners, causing severe marital conflicts. There 
are many benefits of the NightLase® treatment, such as no need for 
anesthesia, no pain and only three short 20-minute sessions with 
immediate results. Nightlase uses the photothermal capabilities of 
Er YAG laser to convert and initiate the formation of new collage in 
mucosal tissues in the oropharynx, soft palate, and uvula. The heat 
generated allows the collagen to reform resulting in tightening of 
the soft palate and surrounding tissues. This caused a rise of the 
soft palate and tightening the tissues of the oropharynx resulting in 
an improvement in the airway [54]. 
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Er YAG Laser Etching

Laser etching was preformed with an Er:YAG laser device 
(Fotona 1210, Ljubljana, Slovenia) [Figure 2] of a wavelength 
of 2940 nm at 20 HZ, SP mode for 25 s. The two different power 
settings used in this study were 100 and 150 mj. laser etching at 150 
and 100 mj was adequate for bond strength but the failure pattern 
of brackets bonded with laser etching is dominantly at adhesive 
- enamel interface and is not safe for enamel during debonding. 
Laser etched enamel using Er:YAG laser etching at 1 W (100 mJ, 10 
Hz) would provide both adequate demineralization prevention and 
bracket bond strength [55].

Er YAG Use for Caries Prevention

In a recent study of caries inhibitory effect of remineralizing 
agents (Casein Phosphopeptide-Amorphous Calcium Phosphate 
and Casein Phosphopeptide-Amorphous Calcium Fluoride 
Phosphate) on human enamel followed with Er:YAG irradiation. It 
was proven that Er:YAG laser treatment increased resistance of the 
treated enamel to acid dissolution [56].

Er YAG in Oral Surgery for Bone Removal 

Based on the results of a study compared laser vs bur for 
bone cutting in impacted mandibular third molar surgery, they 
concluded that possibility of bone cutting using lasers is pursued. 
The osteotomy is easily performed with laser and the technique 
is minimally invasive surgical procedures. The use of Er:YAG laser 
may be considered as an alternative tool to surgical bur specially in 
anxious patients [57]. 

Safty of Er YAG Laser for Cavity Preparation in Primary 
Teeth

Laser irradiation makes structural and chemical changes on the 
dental hard tissues. These changes alter the level of solubility and 
permeability of dentin. Consequently, the bond strength of adhesive 
systems on dentine surfaces may be affected in clinical practice. 
The Er:YAG laser is safe for cavity preparation in primary teeth [58].

Er YAG use in Cavity Preparation

Cavity preparation with an Er:YAG laser could be considered 
as an alternative to the conventional method of drilling [59]. Some 
authors showed that there is no statistically significant difference 
could be observed in the fracture strength of dentin beams when 
treating them either with Er:YAG and Er, Cr: YSGG laser irradiation 
or mechanically by a fine diamond bur in a high speed hand 
piece. Additionally, no statistically significant difference could be 
observed between treated and untreated specimens [60]. Er:YAG 
laser is more comfortable and pleasant for the patient, compared 
to conventional drill. Also it reduces tooth hypersensivity and 
microbial load within the cav¬ity [61]. Ablated dentin with different 
parameters of Er:YAG laser energy with powers below 3 W make no 
cracks. These facts are adjunct to suitable dentin surface treatment 
by Er:YAG laser, making Er:YAG laser a desirable alternative method 
for cavity preparation [62]. Ablation of dental hard tissues was 
achieved using the Er:YAG laser operating at high pulse repetition 
rates with minimal peripheral thermal damage [63]. 

In addition, since water is the primary absorber of Er:YAG 
radiation and demineralized areas are more porous and have a 
higher water content, the ablation rate is significantly higher for 
demineralized enamel [64] and dentin vs sound tissues. The Er:YAG 
laser may be used in conservative dentistry as an alternative to 
conventional instruments and in association with orthophosphoric 
acid, with several advantages, such better strength bond [65], 
reduced micro leakage [66], and also lower discomfort and higher 
patient satisfaction [67]. In an in vitro study, even if considered as 
preliminary due to the limited number of samples, it is confirmed 
that Er:YAG can be employed also in dental traumatology, to restore 
frontal teeth after coronal fracture, with the advantage of improved 
adhesion of the dental fragment to the tooth, in particular by 
decreasing micro leakage [68] .

Er YAG Laser Helps in Orthodontics (ceramic 
braketsdeponding)

Irradiation of Nd: YAG, Er: YAG, CO2, Tm: Yap, diode or ytterbium 
fiber lasers may be considered as an efficient way to reduce shear 
bond strength of ceramic bracket and debonding time. This 
technique is a safe way for removing ceramic brackets while the 
intrapulpal temperature and enamel surface were minimally 
affected, along with reduced ceramic bracket failure [69]. The 
Er-YAG laser emits at 2904 nm, which corresponds to the main 
absorption peak of water [4]. Therefore, an Er- YAG laser may be 
highly absorbed by the adhesive bond¬ing resin containing water 
or residual monomer [70].

Advantages of ytterbium fiber laser are high optical quality, 
compact size, extended lifetime and flexible mode of operation. 
Thus, it was selected for ceramic bracket removal [71]. Er-YAG laser-
aided debonding, with or without water-cooling, was effective for 
debonding ceramic brackets by reducing resin shear bond strength. 
Er-YAG laser application with water-cooling appeared to be a safer 
option by reducing resin shear bond strength and reducing the 
likelihood of intrapulpal temperature increase while debonding 
ceramic brackets [70].

Er YAG Laser Use for Biopsies of the Oral Mucosa

Some authors concluded that lasers may be used in soft tissue 
surgery of the oral cavity, as long as the biological effects related 
to the use of each type of laser are understood and respected. The 
Er:YAG laser may be the laser of choice for biopsies of the oral 
mucosa because of the minimum histological artefacts observed, 
ensuring a valid histological evaluation, followed by the CO2 laser 
at 3.5W in pulsed mode, es-pecially when the surgeon needs more 
hemostasis on the surgical field [72] .

Er YAG Laser for Treatment of Oral Tumours

Both, Er:YAG and CO2 lasers may be effective in the treatment 
of benign neoplastic and tumorous lesions of the oral soft tissues 
being an alternative to conventional surgery. They shorten post-
operative healing time, eliminate or soothe inflammation, reduce 
perisurgical pain. Thanks to effective hemostasis, CO2 laser may 
be used to remove richly vascularized lesions and in compromised 
patients. Healing neither changes the tissue profile nor causes its 
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loss, ensures fast and good adaptation of the changes. A major 
limitation of the laser technique application is thermal injury to 
the surrounding tissues, charring and melting of wound margins 
with CO2 laser, especially during multiple passage of the beam and 
with excessive power for a small lesion. This may promote tissue 
defragmentation and thus frequently makes histopathological 
evaluation impossible. CO2 laser is contraindicated for lesions 
smaller than 3 mm in diameter as they may get defragmented 
making histopathological evaluation impossible. Therefore, for the 
majority of minor oral surgeries Er:YAG laser is a better choice [73].

Er:YAG Laser Dentistry in Special Needs Patients

Based on the experience performed on 5 years of Special Care 
patients conservative treatments we may affirm the Er:YAG laser 
may be considered as a good way to improve the cooperation, to 
reduce anxiety related to rotating instruments and to reach better 
results with equal or shorter operating times [74].

Laser Teeth Bleaching

Based on the limited number of investigations, at present, 
only one particular wavelength appears to be able to perform 
direct photo bleaching (or photooxidation), that is, KTP (532 nm). 
When KTP is used in combination with a bleaching gel containing 
a chromophore (sulphorhodamine) allowing the absorption of the 
laser light, photodynamic reactions can be induced (photochemical 
activation of the gel with limited photothermal activation). This 
combination of wavelength and specifically dyed bleaching gel also 
allows for safe bleaching (no damage of the enamel, no heating of 
the pulp) when the guidelines of the manufacturer are followed.

At present a number of wavelengths are not recommended for 
laser bleaching: Nd: YAG, Er: YAG, and CO2. Combination devices 
consisting of LED-diode laser do not result in enhanced lightening 
and are in fact not effective. When using high power diode lasers 
for bleaching care has to be taken so as not to overheat the pulp. 
Also diode lasers are not really advocated for laser bleaching except 
when the wavelength is used in combination with a bleaching gel 
containing wavelength specific absorbers [75].

Types of Lasers and Their Applications in Pediatric 
Dentistry

Caries Prevention: Resistance of the tooth surface to 
penetration of cariogenic agents plays an important role in 
prevention of caries. Er YAG laser can be successfully used to 
increase resistance of a newly erupted permanent tooth in children 
and adolescents to acid erosion [76,77]. Er:YAG laser cavity 
preparation allows minimally invasive treatment of dental caries 
and also shows excellent acceptance among both young children 
and their parents. The choice of optimal energy parameters is 
a requirement for successful laser caries treatment in pediatric 
dentistry [78].

Restoration, Pit and Fissure Sealants: Laser can also be used 
for tooth surface preparation prior to the application of pit and 
fissure sealants. Laser can be applied for conditioning, cleaning and 
disinfection of pits and fissures as well [79]. Er YAG laser at lower 

wavelengths causes only macro-roughening of pits and fissures 
[80].

Er YAG in Endodontics: Application of Er:YAG laser for pulp 
coagulation has also shown more favorable results after 2 years in 
comparison with calcium hydroxide [81,82].

Er YAG in Soft Tissue Applications of Laser: Er:YAG laser can 
be used for frenectomy in infants with tight maxillary frenumor for 
upper and lower frenecto¬my in infants with severe ankyloglossia 
[83] .

Traumatology: Er:YAG laser can be used for fusion and 
sealing of dentinal tubules in case of fractured teeth or open 
dentinal tubules. By doing so, the permea¬bility of tubules and the 
consequent tooth hypersensitivity will decrease [84].

Exposure of Unerupted Teeth for Orthodontic Purposes: 
For soft tissue removal and exposure of unerupted teeth for 
orthodontic purposes, Er, YAG is used [85].

Etching of Amalgam Surface for Orthodontic Bracket 
Bonding

The application of sandblasting technique accompanied 
by Er:YAG laser irradiation to an amalgam filling in a tooth can 
provide suitable surface for bonding of orthodontic brackets to that 
amalgam [86].

Summary and Conclusion

The basics of laser science, tissue effects of dental lasers, Er YAG 
laser wave length and their chromophores, and some important 
applications of this laser in dentistry have been discussed. It is 
important for the clinician to understand these principles to take 
full advantage of the features of Er YAG laser and provide safe and 
effective treatment.
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