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Alkali-containing glasses and the discovery of bioactivity
The discovery of bioactive glasses in the late 1960s is an 

excellent example of a target oriented research led by Larry L. 
Hench as an assistant professor at the University of Florida. The 
idea for the material was stimulated by a challenging discussing 
between him and the Colonel Klinker during a bus ride towards the 
U.S. Army Materials Research Conference held in Saga more, New 
York, in 1967 [1]. Klinker had recently returned to the United States 
after serving as an Army medical supply officer in Vietnam and 
was concerned with the number of amputations derived from the 
body’s rejection of inert metal and plastic implants. There was an 
urgent need for a novel material that could form a living bond with 
tissues in the body. Soon after, Larry L. Hench submitted a proposal 
to the U.S. Army Medical Research and Design Command that was 
funded in 1968 [1]. The bonding ability of a glass composition 
(45SiO2–24.5Na2O–25.5CaO–6P2O5 wt. %, called 45S5 Bioglass®) 
to bone and muscle after six weeks post implantation in rats was 
firstly observed in 1969 by Ted Greenlee, an Assistant Professor of 
Orthopaedic Surgery at the University of Florida and reported in 
papers in 1971 [2] and 1973 [3].

The 45S5 Bioglass® has been in clinical use since mid-1980s, 
with the first successful surgical use in the replacement of ossicles  
in middle ear [4,5]. It is also being marketed in particulate form  

 
under the trade name of Perioglas®, used to fill periodontal bone 
defects, and more recently as injectable pastes and putties under 
the trade name of Nova Bone®. According to a recent publication, 
45S5 Bioglass® has been clinically applied in more than 1.5 million 
patients [6]. Even though, this composition presents several 
drawbacks derived from its high alkali content, including:

a.	 High dissolution rate [7] that causes fast resorption and 
may negatively affect the balance of natural bone remodelation, 
leading to gap formation between the tissue and the implant 
material [8]; 

b.	 Poor sintering ability and early crystallization [9-15] due 
to the close proximity between glass transition temperature 
(Tg~550ºC) and the onset of crystallization (Tc~610ºC) 
hindering densification and resulting in poor mechanical 
strength, a serious limitation for manufacturing highly porous 
scaffolds; 

c.	 The cytotoxic effect caused by high doses of sodium 
leached to the culture medium [16,17].

The interest in bioactive glasses has been continuously 
increasing, attempting to further explore the properties of 45S5 
Bioglass®, expanding the potential applications and overcoming 
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some of its main drawbacks. The number of papers published 
per year in the field has noticeably increased especially from the 
beginning of 1990s, as can easily be observed in (Figure 1) that 
plots data compiled in a recent (July 2017) literature search in the 
Scopus. 

Most of the reported bioactive glass compositions investigated 
so far [18-24] are inspired in the 45S5 Bioglass® and contain 
significant amounts of alkali oxides (Na2O, K2O) that decrease 
the melting temperature of the glass, but can reduce their 
performances in vitro and in vivo. The sudden release of alkali ions 
from alkali-containing BGs to the cell culture media was reported 
to exert in vitro cytotoxic effects [16,17]. On the other hand, the 
mismatch between the high rates of dissolution and degradation 
of 45S5 Bioglass® and the growth of new bone was confirmed in 
a study performed in rabbits [18-24]. Such mismatches are likely 
to compromise bone regeneration especially in defects with critical 
size.

Figure 1: Number of papers published per year in the field 
of bioactive glass along the last 44 years.

Alkali-Free Bioactive Glass Compositions 
In an attempt to overcome the above referred limitations of 

the alkali-containing glasses, a new series of alkali-free bioactive 
glasses compositions were designed based on a completely different 
concept, namely starting from the compositions of minerals that are 
biocompatible and bioactive, including diopside (DiCaMgSi2O6), 
fluorapatite (FACa5(PO4)3F), and tricalcium phosphate (TCP3CaO.
P2O5) combined in different proportions. Figure 2 shows most of 
the investigated compositions in this ternary system, as well as in 
the binary DiFA and DiTCP ones [25-29].

 The compositions corresponding to black symbols () were 
less prone for glass formation and underwent fast crystallisation 
even upon quenching the melts in cold water to obtain the glass 
frits. The compositions corresponding to light grey symbols () 
enabled obtaining amorphous frits, but the bulk glasses cast on 
metal plates tended to partially crystallise, especially in the parts 
farer from the metal plates that cooled more slowly. The most 
interesting compositions from the processing view point were 
those corresponding to dark grey symbols ().

In a sub-series of compositions, MgO was partially replaced 
(1-10 mol %) by ZnO [30], while in another sub-series CaO was 
partially replaced (1-10 mol %) by SrO [31]. In a third sub-series 

of compositions, these partial oxide substitutions were combined 
in an equimolar basis [32,33]. The effects of such individual or 
combined substitutions on the relevant properties of the resulting 
bioactive glasses were investigated and reported in several 
publications [30-33].These alkali-free bioactive glasses revealed to 
have several distinctive features including: moderate degradation 
rate, accompanied by a fast bio mineralisation rate in vitro with the 
formation of a hydroxycarbonate apatite (HCA) surface layer after 1 
h of immersion in simulated body fluid (SBF) [26,30,32]; the ability 
to reduce oxidative stress [30,32]; osteogenic activity, inducing 
the differentiation of hMSCs into bone forming cells even in the 
absence of osteogenic medium [29]. This osteo induction effect was 
significantly greater in comparison to that of 45S5 Bioglass® [34]; 
and excellent bone bonding ability confirmed by in vivo studies 
using sheep as animal model [35]. 

Figure 2: Graphical representation of the alkali-free 
bioactive glass compositions investigated [25-29].

Figure 3: Porous scaffolds with different pore sizes 
fabricated by the polymeric sponge replication method 
from the composition 70-Di-10FA-20TCP.

Other interesting features of these bioactive glass compositions 
are the easiness of dispersing the glass powder frits in aqueous 
suspensions and scaffold fabrication by additive manufacturing 
techniques [36]. The pH values of the suspensions are lower in 
comparison to those of 45S5 Bioglass® and the particle size of 
powder frits can be more conveniently reduced and expose a 
larger surface area to the dispersion liquid without undergoing a 
so extensive dissolution [37,38]. Figure 3 shows porous scaffolds 
with different pore sizes fabricated by the polymeric sponge 
replication method from the composition consisting of 70 wt.% 
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diopside (Di-CaMgSi2O6) - 10 wt.% fluorapatite (FA-Ca5(PO4)3F) 
- 20 wt.% tricalcium phosphate (TCP-3CaO.P2O5), or shortly, 70-Di-
10FA-20TCP. The scaffolds can be prepared with any desired size, 
contrarily to what happens in case of Bioglass 45S5®.

Still more important from the overall processing point of view is 
the excellent sintering ability, achieving full densification before the 
onset of crystallization, resulting in strong mechanical properties 
[25-28,31-33]. Figure 4 compares porous scaffolds fabricated by 
robo casting, an extrusion based additive manufacturing technique 
that enables designing not only the external form and dimensions, 
but also tailoring the internal structure. The starting materials were 
45S5 Bioglass® (Figure 4a) [37,38], and our alkali-free bioactive 
glass 70-Di-10FA-20TCP (Figure 4b) [36]. 

 It can be seen that the sintered rods of 45S5 Bioglass® are still 
too porous due to its poor sintering ability and early crystallization 
[9-15], leading to unsatisfactory compressive strengths values. In 
contrast, the compressive strength values of the scaffold fabricated 
from 70-Di-10FA-20TCP (Figure 4b) were significantly higher in 
comparison to those reported for cancellous bone (212 MPa) [36-
38].

Figure 4: Comparison of the densification extent of the 
cylindrical rods deposited by rob casting from 45S5 
Bioglass® (a), and from 70-Di-10FA-20TCP (b).

Conclusion 
Larry Hench’s pioneering work can never be overemphasized. 

He was always a very creative and resourceful man and used to 
share his findings with generosity. We are fortunate enough being 
able to learn all his teachings about bioactivity and bioactive 
glasses. But his openness to new challenges is, by chance, the 
greatest of all his teachings. So, the best tribute we can give him is 
feeding ourselves with the full table of knowledge left by him and 
gaining strength to continue the journey in the search of better 
materials for healthcare applications. Our efforts put forward 
in the development of alkali-free bioactive glass compositions 
that could overcome the main drawbacks presented by 45S5 
Bioglass® and other alkali-containing bioactive glass compositions 
went in that direction. From the results reported in our previous 
related publications one can conclude that they offer a set of well-
balanced overall properties for the most demanding applications 
in healthcare, bone regeneration and tissue engineering. The most 
salient features concerning the in vitro and in vivo performances 
include:

a.	  Absence of cytotoxic effects (no harmful dissolution 
products and the resulting pH); 

b.	 Non-genotoxic – no damage to genes within a cell or DNA 
mutations; 

c.	 Biocompatible – absence of any foreign body reaction;

d.	 Osteo conductive – bone readily grows on its surface; 

e.	 Osteo inductive – recruits immature cells and stimulates 
them to develop into pre-osteoblasts, essential in any bone 
healing process;

f.	 Osseo integration – stable anchorage of an implant 
achieved by direct bone-to-implant contact.

Furthermore, our alkali-containing bioactive glass compositions 
are easy to process – an essential feature for scaffolds fabrication 
(derived from the moderate pH of the suspensions and the 
excellent sintering ability), achieving full densification before the 
onset of crystallization and conferring to the constructs adequate 
mechanical properties for the intended applications. All these 
features mean that significant progresses were made towards an 
ideal bioactive glass.
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