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Washing-free redox cycling immunoassay technique was 
developed by Dutta et al. [22,23] to minimize the washing steps of the 
immunoassay that allows fast, sensitive, and single-step detection 
of biomarkers in serum with low interference. Electrochemical-
enzymatic (EN) redox cycling (Figure1) was used to amplify the 
signal-to-background ratios. Biotinylated capture probe (IgG) 
was immobilized on the ITO electrode surface. A sample solution  

 
(contains unknown concentration of biomarker) was prepared  
with enzyme-conjugated IgG and enzyme-substrate, which was 
spiked with serum with different concentrations of target antigen. 
The solution mixture was then injected into the electrochemical cell 
and incubated for 10 min. The interference effect was minimized 
by applying a lower applied potential and eliminating the ascorbic 
acid effect. A calibration plot was obtained with increasing the 
target concentration. The signal was increased with the target 
concentration because surface concentration of bound enzyme-
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Abstract

The main driving force of point-of-care testing require to bring the test methods conveniently and immediately to the patient. This is particularly 
true for the developing countries with less developed health care infrastructure. However, a simple and reliable biosensing technique to an affordable 
platform is often challenging [1-3]. Mostly, Enzyme-labels are used in electrochemical biosensors for signal amplification [4]. The enzyme-based 
biosensors are most famous because of its high and reproducible signal amplification [5]. But there is a big question mark for the stability of an 
enzyme and not suitable for bed-side applications. Also, another problem for the enzyme is the direct electron transfer between enzyme label and 
electrode is a formidable challenge because of the large electron-hoping distance between the electrode and the redox center of the enzyme label 
[6]. As a result, the signal amplification by enzymatic reaction is not suitable for the early stage diseases detection. Redox cycling is a process that 
can help to overcome this limitation by repetitively generate or consume signaling species (molecules or electrons) in the presence of reversible 
redox specie [7]. Many redox cycling processes can be combined with biosensor for the ultrasensitive biomarkers detection i.e. electrochemical-
electrochemical (EE) redox cycling, electrochemical-chemical (EC) redox cycling, chemical-chemical (CC) redox cycling or electrochemical-chemical-
chemical (ECC) [3,8].

A combination of redox cycling and electrochemical detection can play a significant role for the early stage diseases detection. Electrochemical 
biosensor technique is most popular and ideal technique for point-of-site application because of their low cost, high sensitivity, portable field-
based size, and rapid diagnosis [9-11]. However, it is extremely challenging to originate an electrochemical point-of-site technique retaining both 
simplicity and very high sensitivity. There has been an increased attempt towards the development of electrochemical redox cycling techniques 
to develop the disposable rapid test for early stage cancer and infectious diseases biomarkers detection for point-of-care diagnosis [12-15]. 
Currently many biosensors using affinity binding between antigen and antibody have been developed but most of them have a drawback in terms of 
simplicity, rapidness, cost-effectiveness and ultra-sensitivity [16-18]. Most reported biosensors need many steps washing before the actual sensing 
measurement and that’s why those immunoassays are not applicable for bed side application. If a wash-free electrochemical scheme is combined 
with the assays, this could significantly simplify the detection procedure and reduce the assay time [19-21]. In this review wash-free redox cycling 
technologies are focused on for simple, cost-effective and portable immunosensors that can be operated for the applications in bed-side diagnostics.
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conjugated IgG was increased with increase in target concentration. 
The surface bound enzyme allowed faster electron mediation than 

an unbound enzyme. The limit of detection (LoD) was 1pg/mL in 
PBS and 10pg/mL in serum for PSA.

Figure 1: (a) Schematic diagram of a washing-free immunosensor using proximity-dependent electron mediation (b) Cyclic 
voltammograms for (i) PBS containing 5.0mM glucose, 100μM Fc, and 100μg/mL GOx, (ii) PBS containing 5.0mM glucose 
and 100μM Fc, (c) Chronocoulogram recorded at immunosensing electrodes for detecting different PSA concentrations in 
real samples. (d) A comparison graph between washing-free immunosensor and a commercial instrument (Reprinted with 
permission from Dutta et al. 2014. Copyright (2014) American Chemical Society).

An electrochemical-enzymatic redox cycling and wash-free 
technique was presented by Nandhakumar et al. [24] to detect 
cortisol where a competitive displacement method was used in 
human serum. The electrochemical signal was mainly contributed 
by the bound conjugate than the unbound one and the detection 
limit was ∼30pM within 12min. The developed wash-free sensor 
can be used for simple, sensitive, and rapid point-of-care diagnosis 
of small molecules. An electrochemical enzymatic redox cycling-
based wash-free DNA detection protocol was reported by Fang 
et al. [25] using proximity-dependent electron mediation. This 
wash-free technique could discriminate between target template 
DNA of Piscirickettsia salmonis and nontarget DNAs using a Zinc 
Finger Protein. The detection limit was approximately 300 copies 
in 13.2μL, indicating an ultrasensitive detection method. An 
electrochemical-chemical (EC) redox cycling-based wash-free DNA 
sensor mediated by Conjugated Polyelectrolyte was reported by 
Park et al. [26] An anionic π-conjugated polyelectrolyte (CPE) label 
having many redox-active sites showed faster electron mediation 
after sandwich-type target-specific binding. The fast CPE-mediated 
oxidation of ammonia borane along the entire CPE backbone (EC 

redox cycling) affords high signal amplification and avoid the 
washing steps for biomarkers detection. 

Conclusion
In this review, a simple and cost-effective wash-free redox 

cycling detection method was discussed for point-of-care testing 
such as medical diagnostics, biological research, environmental 
monitoring and food analysis. This simple technique can help to 
develop portable diagnostic biodevices which is urgently required 
for the developing countries with less developed health care 
infrastructure. In future, printing technology on flexible substrate 
and wash-free method could open new opportunities for the 
development of bioelectronics toward practical applications. 
Furthermore, the real sample analysis in the wash-free chip 
will make the diagnostic process highly applicable for bed side 
application. 
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