
Volume 5- Issue 4: 2018 

7867

ISSN: 2574-1241
DOI:  10.26717/BJSTR.2018.10.001966		

Stanley Shostak. Biomed J Sci & Tech Res

Review Article 

Biomedical Journal of 
Scientific & Technical Research (BJSTR)

Open Access

Introduction 
Hydra’s buds develop through the integrated activity of two 

different types of cells:

a)	 Epithelial (aka epithelial-muscular) cells forming the 
didermic body wall (with extension into tentacles, hypostome, 
and foot) and

b)	 Interstitial cells (aka amoeboid or basal cells) 
differentiating as cnidocytes (aka nematocytes, the cells that 
make cnidocysts, aka nematocysts), nerve, gland, and sex cells 
[1-3]. 

Over the years, I consolidated some ideas and data into a 
theory about how these different kinds of cells came to cooperate 
in budding [4-8]. I proposed that early in the Neoproterozoic Era 
a primitive two layered epithelial mat (resembling contemporary 
Placozoa [9-10]), was infected by amoeboid cells already equipped 
with an extrusion apparatus. The epithelia’s attempt to reject the 
foreign cells failed but a symbiogenic relationship evolved and 
the duel system found a selective advantage in modified ejection. 
Ultimately, a mechanism for removing excess amoeboid cells was 
adapted for the production of buds. The adaptation hinged on three 
conditions:

i.	 Amoeboid cells equipped with an extrusion apparatus 
were the ancestors of hydra’s interstitial cells. 

ii.	 Hydra routinely produced excess cells that moved toward 
and accumulate in the budding region.

iii.	 Excess cells form discrete modules that erupt as buds and 
are then “ejected.”

a)	 Amoeboid cells equipped with an extrusion apparatus 
were the ancestors of hydra’s interstitial cells. I am hardly the first 
to point to the presence of stinging apparatuses in protozoans 
and to similarities between protozoan “cnidocysts” and cnidarian 
cnidocysts: the “peduncle,” “rhizoid,” and “perforator” cnidocysts 
of dinoflagellates [11-14], the trichocysts of trypanosomes [15],  

 
zooflagellates [16] and mastigophorans [17], the “apicoplasts” 
(apical complexes) of “Sporozoa,” the “polaroplast,” of 
microsporidians [18], and the “polar capsules” of myxosporidians 
[19-25]. Jiři Lom, the distinguished Czech protozoologist and 
parasitologist, suggested that these “homologies [were] perhaps too 
close to be considered only a convergency phenomenon” [26], and 
Pierre Tardent, the renowned Swiss coelenterologist commented 
“The wheel didn’t have to reinvent itself” [27], i.e., cnidrians 
didn’t have to invent cnidocysts. It is a small step to extend Lynn 
Margulis’ hypothesis of endosymbiosis [28] from mitochondria 
and chloroplasts to cnidocysts. Ancient eukaryotic amoeba could 
have been infected by monerans (presumably bacteria) already 
equipped with an eversion apparatus. The “guest” would then 
introduce genes to the “host” through unilateral horizontal gene 
transfer, and a permanent extrusion apparatus (a cnidocyst) would 
have evolved in the amoeba. What followed was a different sort 
of symbiosis -symbiogeny - the merging and mutual evolution of 
eukaryotes [5-6]. In the case of cnidarians, at some point in the 
evolution of multicellular eukaryotic life, probably prior to the 
Vendian Period 700 million years ago, an amoeboid protoctistan 
(to use Margulis’ term [29], aka protozoan) already equipped 
with an extrusion apparatus gained access to a primitive didermic 
metazoan mat either by invading or being ingested. I suggest that, 
at the time, mechanisms for isolating different forms of metazoan 
life were not as restrictive as they became since and the efforts of 
the epithelia to reject the amoeba were feeble.

Thus, the protoctistan wound up sequestered in the primitive 
epithelium, and the two entered a symbiogenic relationship in 
which each symbiont evolved to mutual advantage. Inevitably, 
cooperation gave rise to the rudiments of the phylum Cnidaria. 
“Are cnidarians composite metazoans… metazoan chimeras” [30]? 
Did what begin as a protoctistan equipped with a cnidocyst - 
whether trespasser, guest, foreigner, invader, colonizer, or ingested 
prey - become Cnidaria’s interstitial cells, while the epithelial mat 
-host, victim, or predator -evolved into the cnidarian epithelia? 
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Had that happened, interactions between the two could have led 
to the further evolution of nerve and gland cells from amoeboid 
descendants, while the cellular mat could have evolved into the 
cnidarian body wall’s epidermis and gastrodermis, tentacles with 
epithelial battery cells, hypostome, peduncle, and adhesive foot.

b)	 Hydra routinely produces excess cells that move toward 
and accumulate in the budding region. One of Hydra’s attraction 
to biologists is that under optimal laboratory conditions, hydra 
cultures expand exponentially. The cell populations also expand 
exponentially [31-34]. Since the density of hydra’s cell populations 
is constant, except for transient increases in the budding region, 
hydras would seem to produce and get rid of excess cells. Rather 
than treating these cells as waste, however, symbiogeny capitalized 
on them by adapting them for asexual reproduction through 
budding.  The movement of cells toward the budding region is 
well documented. Richard Campbell [31-35] calculated, that in H. 
littoralis, under optimal laboratory conditions, 85–86% of hydra’s 
structural cells produced throughout the body cylinder (gastric, 
budding, and upper peduncle regions) migrate to the budding 
region. Similarly, in H. viridis, about 800 of a thousand parental 
gastrodermal [digestive] cells move to the budding region per day 
[34].

Likewise, interstitial cells and their differentiation 
intermediates make up more than half of all the cells in the adult 
animal moving to the budding region [36]. The remainder of a 
hydra’s daily cellular production is lost at the animal’s extremities, 
tentacles and foot. All the excess cells dedicated to budding are 
produced along the length of hydra’s body wall [31-37] in species-
specific patterns of cell division. Paul Brien discovered “La zone de 
croissance sous hypostomiale” (Brien’s sub-hypostomal growth 
zone) in Hydra fusca [38], and Allison Burnett extended Brien’s 
growth zone in H. viridis and H. pseudoligactis (H. canadensis) to 
the gastric and budding regions [39] where a high frequency of 
mitotic figures is also found. Campbell showed that in H. littoralis, 
a distal zone of elevated mitotic activity appears among epidermal 
epitheliomuscular cells (a.k.a. “Ectodermal epithelial cells”) and 
gastrodermal gland cells (a.k.a. “Endodermal gland cells”), but 
cell proliferation peaks in the budding region for interstitial cells 
(“Ectodermal interstitial cells,” a.k.a. basal cells, amoeboid cells) 
and gastrodermal epitheliomuscular cells (a.k.a. “Endodermal 
epithelial cells”) [33, 35, 40-42]. 

Measured in mitotic figures and in the incorporation of tritiated 
thymidine, the epidermis supports a higher rate of cell division than 
the gastrodermis [33]and labeled epidermal epitheliomuscular 
cells move toward the budding region faster than gastrodermal 
digestive cells [32-34]. Whatever the cell type, and wherever 
along the body column cells are produced (i.e., both above and 
below the budding region) they converge on the budding region 
[33-35,40-43]. The mesoglea situated between the epidermis and 
gastrodermis is a substratum for cell movement rather than a glue 
holding the two epithelial layers together. Epithelial-muscle cells, 
with longitudinal muscle extensions seem to actively crawl on the 
mesoglea with the help of their muscle processes [44] and are seen 
to migrate over experimentally denuded mesoglea [45]. In contrast, 

the gastrodermal epithelial-muscle (digestive) cells with circular 
muscle extensions seem to become compressed and crowded into 
the budding region [46]. 

c)	 Excess cells form discrete modules that erupt as buds 
and are then “ejected.” Neither the budding region nor buds 
are distinctive fountains of proliferating cells, meristems, or 
blastemata. Likewise, in H. viridis, the frequencies of mitotic figures 
in early buds lacking tentacles (stage I) and buds with tentacle 
rudiments (stage II) “could not be distinguished.” Given the absence 
of mitotic figures in the hypostome, the “number of mitotic figures 
on the bud proper at the later stage” (stage III) is below that on 
the parent [32]. Moreover, cell divisions proceed at the same rate 
in freshly detached buds, during the initial growth period, and in 
budding animals [32,34,47-51]. The distinguishing characteristic 
of the budding region is the local production of new mesogleal 
components [52-54]. Indeed, “[a]t sites of tissue evagination… the 
mesoglea was dramatically remodeled and epithelial cells moved 
relative to the mesoglea” [43]. 

Thus, “no loss of ECM [i.e., extracellular material of the 
mesoglea] occurs before the time of bud emergence. Rather, the 
ECM is continuous at the sites of bud formation and what occurs is 
simply an increase in the expression of… [mesogleal components] 
as evagination of the bud progresses…. Before evagination of the 
bud occurs… upregulation of at least… [one mesogleal components] 
has already occurred. High expression of both basement membrane 
and interstitial matrix components occurs throughout all stages of 
bud formation” [54].

Hydra’s excess cells funneled into the budding region form 
discrete bud modules that break with parental symmetry, jut 
outward, form a hypostome, tentacles, body cylinder, and feet, and 
ultimately detach as buds [8, 30-35]. In transgenic H. vulgaris [43] 
and grafted H. viridis [55], cells are literally seen moving out onto 
buds. “[C]ells located near the evaginating centre will end up in the 
oral/distal part of the bud; those located more distantly will move 
to a more aboral/proximal part of the bud” [46]. The further “[e] 
longation of the early bud is driven by recruitment of epithelial 
tissue from the mother polyp into the newly forming protrusion” 
[46]. Interstitial cells may play a special role in bud modules, since 
hydras partially or fully (?) deprived of interstitial cells, so-called 
“epithelial animals,” have difficulty budding. Hydras’ interstitial 
cell population is reduced or eliminated in a variety of ways: 
treatment with colchicine, nitrogen mustard (NM), hydroxyurea, 
urethane, and lowered temperature [56-62]. Treated hydras suffer 
addition losses beyond interstitial cells: Specialized nerve and 
gland cells disappear, and the hydras neither move, capture prey, 
or ingest them. They do not restore the missing cells either. If they 
survive the initial treatment, “epithelial animals” frequently die 
from bacterial infections of slowly healing wounds inadvertently 
inflicted during forced feeding and evacuation. Surviving hydras 
(one in twenty) may enlarge, especially in their peduncle, and add 
thin supernumerary tentacles [56].

Photographs of “epithelial animals” show bloated hydras with 
stubby tentacles [56,58]. Like starved animals [63-66], “epithelial 
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animals” bud initially, and they are capable of regenerating thin 
tentacles lacking cnidocysts, but without feeding the animals 
shrink in size [58]. Interstitial cell populations can be restored, 
however, in “epithelial animals” [67] and in clones of reaggregated 
cells from NM-treated hydras [68-70] through grafting with normal 
tissue. Along with the missing interstitial cells and cell linages [70], 
including eggs [71] and sperm [72], the hydras re-acquire normal 
morphology and behavior. 

Discussion
Under optimal laboratory conditions, hydras reach an 

equilibrium (a steady state) at which body size is constant and 
the rate of cell production is balanced by the rate of cell loss 
through budding (everything else being equal such as cell loss 
on tentacles and foot). At equilibrium, excess cells move to the 
budding region, join bud modules, and move off the parental body 
column into developing buds [30-41]. In contrast, starved hydras 
and “epithelial animals,” deprived of interstitial cells and their 
products only produce buds initially while shrinking [64-66] and 
then cease budding.  A residue of bud modules would seem to 
be fully determined at the initiation of starvation and interstitial 
cell destruction (albeit foot cells involved in detachment may be 
defective in “epithelial animals”). But starved animals resume 
budding when feeding is resumed, and “epithelial animals” resume 
budding when interstitial cells are reintroduced [67-72].

The failure of starved animals to continue budding is easily 
explained by the failure of these animals to fill bud modules, but the 
absence of budding in “epithelial animals” (deprived of interstitial 
cells and their products) suggests that epithelia alone are incapable 
of rejecting cells in buds. Thus, hydra’s epithelia need a dose of 
interstitial cells to reject cells in buds. Interstitial cells would seem 
to provide an essential component of bud modules required for cell 
rejection or a trigger for the eruption of a bud from its module. The 
premise that budding evolved from a primitive epithelia’s attempt to 
reject foreign amoeboid cells is consistent with these observations. 
Symbiogeny’s constructive and creative roles in evolution might 
have modified cellular rejection into budding given budding’s 
selective advantage [3-8]. “Natural selection… is not [after all] the 
only force governing evolution, nor had Darwin ever suggested 
that it was” [75]. The evolution of eukaryotes following the 
capture of mitochondria and chloroplasts certainly justifies Lynn 
Margulis’ claims for the creative consequences of endosymbiosis 
[28-29]. Likewise, the creative power of symbiogeny, is implicit 
in the comparison between pond amoeba and blood-borne 
magakaryocytes. The evolution of budding from the rejection of 
amoeboid cells by a primordial epithelial mat at the beginning of 
hydra’s evolutionary history would seem another example of how 
creativity is captured by natural selection [5,73-74].
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