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Introduction
After being abandoned for the several decades, immune-

oncology has since made huge leaps to establish itself as one 
of the cornerstones of cancer research. The ability to evade the 
destruction by the immune system has been included as one of 
the hallmarks of a malignant disease [1]. The complexity of the 
relationship between the cancer and the immune system should be 
stressed out. The evolving view of this topic has led to the change of 
the original immune-surveillance theory into immune-editing [2]. 
The immune editing theory considers the possibility of selection  

 
of less immunogenic clones and the eventual evolution of cancer  
that allows it to evade or even take advantage of immune systems’ 
elements. The great progress made in this field has resulted in 
advance of immune checkpoint inhibitors into daily practice. These 
clinical trials have even placed it as a preferred 1st line treatment 
in some chemosensitive cancer types. NSCLC with high PD-L1 
expression is one such example. However, a considerable number 
of patients do not benefit from this treatment and long-lasting 
responses are seen only in few responders.
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The means to immune evasion are many and are not limited to 
expression of immune checkpoints. The formation and execution of 
anticancer immune response is described by cancer immunity cycle 
[3]. Cancer may inactivate the immune response at any step of this 
cycle: formation of neoantigens, antigen uptake, DC maturation and 
migration, antigen presentation and T cell priming, T cell migration/
tumour infiltration and finally effector functions of T cells at the 
tumour. Based on this, three cancer immune phenotypes have been 
described: immune-desert, excluded and inflamed tumours [4]. 
Each phenotype is associated with immune response inactivation 
at various points of the cancer immunity cycle. Furthermore, every 
step of this cycle may be impaired by several distinct mechanisms. 
The identification of the immune phenotype and the underlying 
mechanisms of immune evasion may therefore be crucial in 
personalization of therapy.

With immunotherapy taking a strong position in the arsenal 
against NSCLC, the search for predictive biomarkers for immune 
checkpoint inhibitors (ICI) continues. However, considering the 
importance of immune evasion in pathogenesis of cancer, the 
definition of these mechanisms may also be relevant in respect to 
other treatment modalities. 

Indeed, much evidence shows that various immune factors 
can predict outcomes after surgery, while radiotherapy and 
chemotherapy may boost the anticancer immunity by causing 
immunogenic cell death. PD-L1 and tumour mutational burden 
[TMB] are immune markers firmly established in clinical 
practice. However, 2 markers can hardly capture the full scope 
of immune response in cancer. Therefore, defining the immune 
microenvironment of NSCLC may be significant in clinical practice 
beyond predicting response to immunotherapy. In this small non-
systematic review, we attempt to broadly outline feasible immune 
markers other than PD-L1 and TMB, their limitations and their 
combinations that may improve the personalized treatment of 
NSCLC. 

Tumour Infiltrating Immune Cells
Various immune cells infiltrating NSCLC play crucial roles. 

They both execute the anticancer immune response but can 
also be recruited by cancer to promote tumour development. 
Unsurprisingly this has made them the focus of attention as 

potential biomarkers in NSCLC. Tumour infiltrating lymphocytes 
[TILs], tumour associated macrophages [TAMs], dendritic cells 
[DC], myeloid derived suppressor cells [MDSC] and cells of other 
lineages were researched to various extent. Here we review the 
mostly researched immune cells in NSCLC. Tumour infiltrating 
lymphocytes [TILs] are the main effector cells responsible for 
anti-cancer immunity. Depending on the degree of TIL infiltration, 
tumours of all types can be classified as cold [low infiltration] or 
hot tumours [high infiltration]. TILs may be utilized as a prognostic 
tool widely referred to as immunoscore. An international task 
force has been established to promote research and integration of 
immunoscore into routine classification and staging of cancer of 
all types [5]. Robust evidence supports prognostic value of TILs in 
triple negative breast cancer [TNBC]. It was shown that increase 
in intratumoral and stromal lymphocytic infiltrations [in H&E 
stains] was associated with reduced risk of relapse and reduced 
risk of death in TNBC regardless of chemotherapy type [6]. An 
international group of experts “TIL working group” has formed 
recommendations for TIL assessment in BC [7]. 

These guidelines were tested retrospectively on pathologic 
tissues of 897 TNBC patients. It was established that high TIL 
density enables to accurately determine patients with favourable 
disease-free survival [DFS] and overall survival [8]. TILs also 
predict response to neoadjuvant treatment in TNBC and HER2 
positive primary BC, especially to carboplatin containing regimens 
[9]. The positive prognostic value of TILs was confirmed in other 
studies as well [10]. Prospective phase III trials in these areas are 
ongoing. The prognostic role of TILs was demonstrated in colorectal 
cancer [CRC] as well. Galone et al measured CD3+ and CD8+ TIL 
density using digital image analysis in the pathologic tissues of 
1,336 CRC patients. The authors found that time to recurrence was 
significantly longer in patients stages I/II/III with high immune 
infiltration [IM]. Low-IM identified a subgroup of patients with 
high-risk stage II CRC. The developed assay allows clinicians to 
more accurately distinguish patients with stage II CRC that are 
at high risk of recurrent disease [11]. Another study found that 
the density of CD45RO+ TILs [memory lymphocytes] can predict 
tumour downstaging and γpTNM stage for rectal cancer following 
30 Gy/10f neoadjuvant radiotherapy [RT] and predict better DFS 
[12] (Figure 1).
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Figure 1: Simplified diagram of interactions between tumour cells (TC) and immune cells. Only relationships between the 
reviewed cells have been demonstrated. The real scope of interactions is much larger, and some are incompletely understood. 
Some of the shown interactions take place in the lymph nodes or both lymph nodes and the tumour. These include Ag 
presentation by dendritic cells or M1 macrophages, cross-presentation and Th1 interactions, Treg interactions. Abbreviations: 
CTL - cytotoxic lymphocyte (CD8+ effector cell), DC – dendritic cells, EGF – epithelial growth factor, IDO - indoleamine 
2,3-dioxygenase, IL – interleukin, INF – interferon, M1 – classically activated macrophage, M2 - alternatively activated 
macrophage, TC – tumour cell, TGFβ – transforming growth factor β, Th1 - type 1 helper lymphocyte, Treg – regulatory 
lymphocyte, VEGF – vascular endothelial growth factor.

As shown above the most widely used methods of evaluation of 
TILs in BC and CRC differ significantly. The most appropriate method 
for NSCLC is yet to be established, but the data from BC and CRC give 
us a sense of possible directions. The general TIL density assessed 
in H&E stains was shown to be a positive prognostic factor in LACE-
bio collaborative group [13]. This group pooled the results of four 
large trials that evaluated the benefit of adjuvant chemotherapy 
versus observation in NSCLC [IALT, ANITA, JBR10 and CALGB]. In 
this group intense TIL infiltration was associated with increased OS 
[HR, 0.45; 95% CI, 0.23 to 0.85; P = .01] and DFS [HR, 0.44; 95% 
CI, 0.24 to 0.78; P = .005]. Intense TIL infiltration was observed in 
11% of squamous cell carcinomas [SCC], 4% of adenocarcinomas 
and 3% of tumours of other histology. Intratumoral and stromal 
TILs are often assessed separately, because it is thought that 
they represent different subsets. However, in this study it has 
been suggested that this may reduce precision due to lack of 
interobserver reproducibility and so the general TIL density was 
measured [13]. Because of their different biological roles, detailed 
analysis of TIL subsets may have further prognostic and predictive 
benefits. This is discussed below.

T lymphocytes [CD3+] and cytotoxic [CD8+] T cells are the main 
effector cells in anticancer immune response. Considering their 

biological role and evidence from studies with CRC, quantification 
of T cells [CD3+] and the subset of cytotoxic T cells [CTL, CD8+] has 
been the focus of most studies in NSCLC. Donnem et al. [14] have 
demonstrated prognostic value of CD8+ density for NSCLC stage 
I-III treated with surgery with or without chemotherapy. The 
study involved 797 patients in 4 cohorts. Each TNM stage was 
subdivided into 3 subgroups by stromal CD8+ density. Both stromal 
CD8 density and pStage were independent prognostic factors for 
DFS and OS. Dividing each pStage into 3 groups by CD8 density 
allowed for reliable stratification of survival. Several other studies 
presented similar evidence [15,16]. Paulsen et al. [17] explored the 
additional benefit of CD45RO+ [memory] TILs. The study found 
that CD45RO+ density was an independent prognostic factor in a 
multivariate analysis along with stromal CD8 density. This benefit 
however was limited to the squamous histology. 

Other studies, however, produced conflicting results. Liu et al. 
[18] in a cohort of 159 NSCLC stage III and IV patients found that 
the presence of CD3[+], CD4[+], CD8[+], and FOXP3[+] TILs was not 
correlated with any clinicopathological features or OS. Nonetheless 
higher FOXP3[+]/CD8[+] ratio in tumour sites was an independent 
factor for poor response to platinum-based chemotherapy in the 
overall cohort. The available data on TILs was summarized in a 
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metanalysis by Geng et al. The results showed that both the stromal 
or tumour islets and generalized CD8+ density were significant 
positive prognostic factors in terms of OS and DFS. Similar results 
were observed for CD3+ infiltration [19]. The conflicting results 
may arise from the fact that the effectiveness of CTLs depends 
heavily on their activation state, expression of immune checkpoints 
and the tumour microenvironment [TME]. Evaluation of immune 
checkpoint expression or various soluble factors in TME, may add 
prognostic value. One study found, that high CD3+ density and 
high levels of intratumoral IL-2 [a crucial cytokine for naïve CD8+ 
development into effector cells] predicted better prognosis in 
radically resected NSCLC patients. 

Both CD8+ and IL-2 were independent prognostic factors in a 
multivariate analysis [20]. The interpretation of CD8+ infiltration 
may also not be so straightforward, as there is evidence that specific 
subsets of CD8+ cells are also important. A subset of CD8+CD103+ 
tissue resident memory lymphocytes was found to predict better 
outcomes in early NSCLC. The density of CD8+CD103+ TILs in 
tumour tissue was significantly associated with better DFS and OS 
in univariate analysis, but only with DFS in a multivariate analysis. 
Moreover, this subset of CTLs had high expression of PD-1 and Tim-
3 immune checkpoints and were able to destroy autologous tumour 
cells upon administration of PD-1 antibodies [21]. The priming of 
TILs by antigen presenting cells [APC] is another important event in 
cancer immunity. Increased dendritic cell density in tumour tissue 
leads to over 2-fold increase in the CD3+ and CD8+ TIL density. This 
increase was found to be limited to adenocarcinomas and tumours 
with high HGMB1 expression in cancer cells [22]. HGMB1 is a well-
known example of DAMP [damage-associated molecular patterns], 
that can lead to activation of innate immunity cells through TLR 
ligation.

The obvious combination includes joint evaluation of TILs and 
immune checkpoints. Both are influenced by regulatory feedback 
loops in healthy tissues. PD-L1 may be intrinsically induced 
by cancer cells or may be an adaptive response to an ongoing 
immune response by cytotoxic TILs. In both cases tumours would 
be classified as PD-L1 positive, but PD-L1 expression represents 
completely different immunological status of the tumour, which 
will determine response to various treatment modalities. 
Mazzaschi et al analysed 59 adenocarcinoma patients and 79 SCC 
patients by evaluating the density of CD3+, CD8+ cells and PD-L1 
expression. According to the immune contexture of CD3 infiltrate 
[positive/negative] and PD-L1 expression [positive/negative], the 
subjects were divided into 4 groups. All the patients in the study 
received treatment with nivolumab. The PFS and OS in the type 
III [PD-L1highCD3low, thought to resemble intrinsic induction of 
PD-L1] were significantly higher than in the most frequent, type II 
group [PD-L1lowCD3low, immune ignorance] [25.7 and 35.5 mo. vs 
12 and 21.7 mo. Respectively, p<0.001] [23]. Independently from 
immune categories, patients with PD-1 low and high CD8/CD3 
ratio had 11 mos. gain in OS [p < 0.01] compared to the reverse 
counterpart. 

Assesment of expression PD-1 [receptor] on TILs, which is often 
overlooked may also be informative. One study found that a PD-L1 
high and PD-1 low pattern predicted 86% of responders to ICI [24]. 
CD4[+] T cells. Most studies did not confirm that the CD4+ cells 
had any impact on progression free survival [PFS] or OS in NSCLC 
[19,25]. This may be because CD4+ cells include very distinct cell 
phenotypes: T helper lymphocytes [Th1,2,7] and T regulatory 
cells [Treg]. Th1 subtype is responsible for polarizing the immune 
response towards antitumour cell-mediated immunity with CD8+ 
cells as main effectors. One of the early trials with PD-1 inhibitor 
found that responses were positively correlated with an increase in 
Th1 gene expression [26]. More studies on CD4+ and their subtypes 
in NSCLC are needed to better determine their value as biomarkers. 
Regulatory T lymphocytes [Treg] are major suppressors of the 
adaptive immunity. Treg are CD4+CD25+ cells. These cells are 
usually detected in IHC by the specific transcription factor FOXP3. 
These cells are crucial for maintaining peripheral self-tolerance. 

The immunosuppressive role of Treg is established early 
on in cancerogenesis [27]. It was shown that treatment of mice 
with early NSCLC with antiCD25 antibodies increased the CD8+ 
infiltration of the tumour, although failed to do so in later stages. 
However, in advanced stages treatment with antiCD25 significantly 
increased the response rate [RR] to carboplatin. Treg in tumour 
tissues negatively influence the prognosis of NSCLC patients. Flow 
cytometry analysis of the NSCLC showed that infiltrating Treg 
have a unique expression profile of PD-L1, CCR8 and IL2R, which 
renders them more immunosuppressive. Also, the expression 
of Treg cell signature genes, such as LAYN, MAGEH1, or CCR8 in 
whole-tumour samples correlates with poor prognosis [28]. One 
study found that the density of FOXP3+ but not CD8+ was a negative 
predictive factor for response to induction chemoradiotherapy in 
stage II and III NSCLC [29], which may emphasise their role in 
early development of immune evasion. Expression of FOXP3 is 
sometimes also observed in tumour cells. Tao et al. [30] found that 
by itself the TC FOXP3+ had no prognostic impact. 

However, the combination of high density of FOXP3+ TILs and 
absent FOXP3+ TCs allowed to identify patients with high risk for 
recurrence after surgery. In a metanalysis the FOXP3 density in 
tumour stroma appeared to negatively influence both OS and PFS 
[19]. These results are supported by findings in other cancer types. 
In BC high CD8+/FOXP3+ ratio was an independent prognostic 
factor for BC specific survival in residual TNBC after neoadjuvant 
treatment [31].Taken together the results of recent studies suggest 
that the prognostic and predictive value of TILs may be increased 
if several cell types are assessed together. This makes sense as 
the interaction between the CTL, Th and Treg is crucial for the 
development of the adaptive immune response against cancer. 
The prognostic effect of these cells may be additionally increased 
when they are analysed in the context of immune checkpoints and 
other factors. Tumour associated macrophages [TAMs] sometimes 
comprise up to 50% of the tumour tissue [32-34]. They may 
be activated to become potent tumour suppressors [classically 
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activated, M1] or effective tumour promoters [alternatively 
activated, M2]. 

Arguably such classification oversimplifies the real-life 
continuum of TAM phenotypes. Current data shows that TAM 
polarization is driven by the TME and M2-like TAMs may specialize 
in promoting angiogenesis [35], providing growth factor support, 
immunosuppression or supporting invasive growth [36] and 
contribute to any other malignant hallmark [37]. However, M1/M2 
polarization view has been accepted as a practical classification to 
separate antitumor TAMs from tumour promoting TAMs in clinical 
studies. Nonetheless there is no standardized method for TAM 
phenotype assessment in IHC. The most widely employed method 
is the double staining with general macrophage marker CD68 
and another marker specific for M1 or M2. The most commonly 
used M1 marker is HLA-DR. Other less explored markers include 
transcription factors STAT1 and IRF5 associated with INFγ 
mediated signalling [36,38]. Meanwhile the variety of used M2 
markers is much bigger. Usually scavenger receptors are utilized, 
the most frequently used are: CD163, CD204, CD206 or CD209 [39].

Majority of the available data shows that TAMs are a significant 
prognostic factor in NSCLC. Welsh et al demonstrated that tumour 
islet TAM density and tumour islet/stroma TAM ratio were 
independent prognostic factors in surgically resected NSCLC 
patients. Meanwhile stromal TAM density was negatively associated 
with OS. Moreover, patients with high islet density and incomplete 
resection survived significantly longer that patients with low 
density and R0 resection [40]. Ohri et al. were the first group to 
use additional markers to specify the phenotype of the TAMs. CD68 
as a general marker and HLA-DR for M1 and CD163 for M2 TAMs 
were used. TAM composition in extended and poor survival groups 
was then compared. Significantly higher M1 density in tumour 
islets and stroma were observed in the extended survival group, 
while the poor survival group had higher M2 stromal density [41]. 
Studies show that in most cases about 95% of TAMs were in the 
tumour stroma and co-stained with M2 marker CD163 [42]. This 
may indicate the crucial role of M2 TAMs in acquisition of malignant 
hallmarks and explain the predictive value of TAMs in EGFR TKI 
treated patients. High stromal M2 density and EGFR status were 
both independent predictive factors in the EGFR TKI treated 
patients in one study [40]. 

The available data on TAMs in NSCLC was analysed in a 
metanalysis. 20 studies from 1999 to 2014 were included. The 
results showed that high islet CD68+ density, islet M1 density 
were positively associated with OS, while M2 stromal density was 
associated with poor OS [43]. However only 4 studies used more 
than 1 TAM marker and of these 3 used markers for both M1 and 
M2 TAMs [41,44-46]. Therefore, a lot of unanswered questions 
remain in this field. 

Immune Checkpoints as Biomarkers
The immune checkpoints are a large group of molecules 

expressed on the surface of the immune, cancer and cancer stroma 
cells. Their role is to regulate the extent of the immune response, so 

it does not become harmful to the host. Cancer cells may express 
them either as do normal cells – in response to an ongoing immune 
response or may induce the expression through other pathways 
that evolve during cancer progression. They are targets of greatly 
successful immune checkpoint inhibitors [ICI], which are now used 
for the treatment of NSCLC. Naturally this has been accompanied 
by the research of IC as predictive biomarkers. However, their value 
as markers may also extend beyond treatment with ICI. Here we 
discuss those checkpoints that show prognostic, predictive value 
and present as therapeutic targets in NSCLC. TIM-3 is a Th1 and 
CD8+ co-inhibiting receptor. It serves specifically to limit the 
duration and extent of Th1 and CTL driven immune responses. 
The ligand for TIM-3 is galectin-9 and its role in cancerogenesis 
is ambiguous. Galactin-9 may be involved in immune suppression 
through TIM-3, but also can promote cancer cell aggregation, 
modulate adhesion to ECM [47,48] limit invasion into tissues and 
limit hematogenic spread [49,50]. 

In hepatocellular carcinoma it was also shown to induce 
apoptosis and inhibit cell growth [51]. A metanalysis that sought to 
asses galectin-9 prognostic value found it to be positively associated 
with survival in multiple solid cancers including NSCLC [52]. 
Because of this multifaceted role of Galectin-9, TIM-3 expression 
may be more informative in describing immune status of tumours. 
Preclinical studies with solid and haematological tumour models 
showed that the most suppressed CD8 lymphocytes express TIM-3 
[53,54]. These cells co-express PD-1 and fail to produce IL-2, TNFα 
and INFγ. This pattern has been observed in a significant fraction 
of TILs in melanoma, NSCLC and non-Hodgkin lymphoma [55,56]. 
TIM-3 has also been found to be expressed on a subset of Treg 
[Foxp3+] lymphocytes. TIM-3+ Tregs constitute approximately 60% 
of all Tregs in NSCLC tissue [55]. The higher TIM-3+Treg infiltration 
is associated with higher nodal stage and advanced disease. High 
TIM-3 expression in tumour tissue was found to be associated with 
more advanced disease and poorer OS in NSCLC [57,58]. 

Since TIM-3 is often co-expressed with PD-1, the prospect of 
dual blockade has been explored in preclinical models [55]. In 
PD-1 immunotherapy resistant B16F10 model of melanoma TIM-
3/PD-1 co-blockade resulted in a significant tumour response 
compared with either TIM-3 or PD-1 blockade alone. Expression of 
TIM-3 on Treg cells and co-expression with PD-1, the two major 
mechanisms of immune evasion in cancer, make it interesting both 
as an immune biomarker and a target for novel therapies. LAG-3 is 
another immune checkpoint inhibitor, that seems to be important 
in immune evasion by cancer cells [59]. LAG-3 is closely related 
to CD4 - the sequence of its coding gene is 20% homologous to 
CD4 [60]. LAG-3 is mostly expressed on TILs of CD4+ [66], CD8+ 
[61] and regulatory lineages, but not on resting T cells [62]. LAG-
3 binds to MHCII molecules with higher affinity than CD4 and 
causes the lymphocytes to become anergic. LAG-3 also associates 
with the CD3-TCR complex after TCR engagement on CD4[+] and 
CD8[+] lymphocytes and acts as a coinhibitory receptor [63]. LAG-
3 and MHC II interaction also negatively affects T cell activation, 
proliferation and differentiation [64]. 
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Soluble form of LAG-3 [sLAG-3] seems to have a distinct 
mechanism of action and is important in DC maturation [65]. LAG-
3 is usually co-expressed with other immune inhibitory molecules 
such as PD-1 and TIM-3 [59]. In preclinical studies it was found that 
dual PD-1/LAG-3 blockade with antibodies was able to cure most 
transplantable tumours that were resistant to treatment by a single 
antibody [59]. LAG-3 has been shown to be important in cancer 
immune evasion in multiple tumour types including melanoma 
[66], ovarian [67], colon [68] and other. In surgically resected NSCLC 
it was found to be expressed on TILs in 25.6 % and frequently co-
expressed with PD-1. Double LAG-3/PD-1 negativity of TILs was 
associated with lower recurrence rates than tumours with TILs 
that were positive for at least one of these immune checkpoints. It 
was also found LAG-3 is more frequently expressed on TILs in non-
adenocarcinoma histology [69]. LAG-3 inhibitors are now being 
studied in phase I studies in several solid tumour types.V domain 
immunoglobulin suppressor of T cell activation [VISTA] is a unique 
B7 family checkpoint that regulates a broad spectrum of immune 
responses. VISTA extracellular domain bears homology with PD-
L1 [70] and was implicated as one of resistance mechanisms to 
antiPD-1/PD-L1 antibodies. 

The “ligand” nature of VISTA was established using immobilized 
VISTA ectodomain, which inhibits T cell proliferation, IL-2 and INFγ 
production in a dose-dependent manner [70,71]. The mechanism 
by which VISTA regulates T cell activation is ill describes as the 
receptor for VISTA and the exact adaptor proteins are yet unknown. 
Contrary to PD-L1 VISTA is mostly expressed on hematopoietic 
cells. Under resting conditions, it is expressed on CD14+ monocytes, 
neutrophils, myeloid CD11c+ DCs, and CD4+ and CD8+ T cells [72]. 
Under inflammatory conditions VISTA expression is induced by p53 
and geno-toxic stress that induces p53 [73]. Its expression may be 
informative since its expression does not overlap significantly with 
other immune checkpoints [74]. In murine cancer models VISTA 
is expressed by CD11+Gr1+ myeloid cells and FoxP3+ regulatory 
lymphocytes [75]. VISTA was found to be upregulated in several 
human cancers. In gastric cancer >80% of VISTA is expressed on 
TILs, while expression on tumour cells is seen in <10% of cases 
[76]. VISTA expression correlates with Lauren classification, 
tumour localization, Epstein-Barr virus infection, KRAS- and 
PIK3CA mutational status, and PD-L1 expression. 

In oral squamous cell carcinoma high VISTA and low CD8 
cell infiltration was associated with poor survival [77]. Increased 
expression of VISTA ant other immune inhibitors [TIM3, LAG3, 
PD-L1] was suspected to be the mechanism of resistance to 
immunotherapy in human prostate carcinoma and melanoma 
following treatment with ipilimumab [78]. Few studies on 
VISTA expression in NSCLC are available. Villarroel-Espindola 
et al studied VISTA expression in NSCLC samples from 758 cases 
by using quantitative immunofluorescence. VISTA expression 
was present in 99% of NSCLC cases. VISTA was predominantly 
expressed on hematopoietic cells in accordance with other studies. 
VISTA expression positively correlated with PD-L1, PD-1, CD8+ 
T-cells and CD68+ macrophages. The expression was higher in 
T cells than in macrophages, it was the highest in CD8+ T-cells. 

Tumours with high VISTA expression were predominantly of low 
tumour mutational burden and EGFR wild type. Presence of VISTA 
in tumour compartment predicted longer 5-year survival [79].

TIGIT [T-cell immunoglobulin and ITIM domain] is another 
checkpoint inhibitor receptor expressed mainly on TILs: natural 
killer cells, effector/memory and regulatory T-cells [80,81]. The 
ligands for TIGIT are CD155 and CD 112. Both are found to be 
expressed by tumour cells, APCs and other T-cells [82]. TIGIT 
competes for CD155 with other stimulatory [CD226] but also 
inhibitory receptors [CD96] [83-85]. Binding of CD155 by TIGIT 
results in suppression of IL-12 production and therefore a shift away 
from Th1 regulated cell- mediated immunity, to a immune-tolerant 
state dominated by Tregs and Th2 [86]. TIGIT is often expressed 
along other inhibitory checkpoint proteins like PD-1, TIM3, LAG-3, 
which results in a exhausted T-cell phenotype [87]. There is also 
evidence from tumour models for synergistic activity of TIGIT 
inhibitors when used with either PD-1 or TIM3 inhibitors, which 
makes TIGIT another potential target for novel immunotherapies 
and a possible immune biomarker [86-88].

 Factors of the tumour microenvironment, IDO. Soluble 
factors in the TME are another important aspect that influence 
the anticancer immune response. Their assessment may shed 
light on immunosuppression exerted on TILs. Arguably one of 
the most prominent is IDO [indoleamine 2,3-dioxygenase]. IDO is 
expressed mainly by cancer cells and some MDSC and is secreted 
into extracellular environment. IDO converts tryptophan [Try] 
essential to T cell function into kynurenine [Kyn] [89], causes 
naive CD4[+] cell conversion to Treg [90] and facilitates MDSC 
expansion [91]. It may be also feasible to asses IDO activity in 
tumour tissues by measuring Try/Kyn ratio, which may present as 
another TME related biomarker [92]. In IDO deficient mice with 
lung cancer IDO deficiency contributes to MDSC depletion, lower 
PD-1 expression on CD8[+] TILs and higher expression of INFγ. 
This results in lower tumour burden [93]. Preclinical studies show 
that IDO downregulation induces sensitivity to pemetrexed and 
gemcitabine [94]. IDO has also been implicated in resistance to 
CTLA-4 inhibitors in melanoma cell lines [95]. IDO expression in 
tumour tissue has been demonstrated to be prognostic of overall 
survival in some tumour types [96]. NSCLC is among the tumours 
with high IDO activity in their microenvironment [97]. 

In NSCLC a post-induction chemotherapy increase in IDO 
activity portends worse OS [98]. These developments lead IDO 
inhibitors into early phase clinical trials which demonstrated 
excellent safety, but modest activity with stable disease being the 
best response [99-101]. This sparked an interest in combining 
these agents with antiPD-1 antibodies and trials investigating this 
approach have shown more promising results [102,103].

Conclusion
It is now evident that any type of cancer represents a failure of 

the immune system at some stage or the other. NSCLC is now at the 
leading edge in the development of immunotherapy. Despite some 
impressive responses, a significant portion of patients progress or 
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do not respond to ICIs at all. This situation urges us to seek new 
markers that will help us define the immunological phenotype of 
cancer and the individual mechanisms of immune evasion. PD-L1 is 
the most researched immune marker in NSCLC since it is the direct 
target of novel immunotherapies. Nonetheless, PD-L1 expression 
remains much kto be desired as a predictive factor of response 
to ICI. Many patients with PD-L1 negative tumours experience 
responses greater than standard second line chemotherapy. 
Immune cells infiltrating the tumour are the logical candidate for 
an immune marker, because they conduct the immune response 
and are the target of immunosuppressive mechanisms. TILs are the 
main effector cells of the immune response and have been shown to 
be useful immune markers in NSCLC. 

TAMs, depending on their state of activation, may be involved 
in both immune response and immune evasion. Data from multiple 
studies supports the value of TAMs as prognostic markers, 
although standardization of their routine assessment remains 
a major obstacle. Tregs are the major suppressive cells in NSCLC 
and have also been shown to be crucial for NSCLC prognosis 
by multiple studies. In any case the complexity of interactions 
between cancer cells, cancer stroma and immune cells will likely 
require comprehensive analysis of several markers, to identify 
immunosuppressive drivers in daily practice.
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