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Introduction

Environmental pollution can occur naturally as a result 
of volcanic eruption, radioactivity, wildland fire, or even dust 
from storms [1]. Rainfall can increase the runoff of some of the 
contaminants into the aquatic system [2-4]. However, human 
activities such as industrialization like mining, urbanization, and 
excessive use of fertilizers are mostly an integrate contributor to 
environmental pollution [2,5]. Gavrilescu in 2010 reported that 
due to increasing demands and developments, pollution in air, soil 
and water has amplified leading to increased air pollution (CO2 and 
hazardous chemical), water pollution (petroleum oil spill and many 
biological pollutants), and as well as chemical waste in soils [6].  
Several chemical compounds have been identified as major causes  

 
of environmental pollution, some of which include iron (Fe), lead 
(Pb), tin (Sn), manganese (Mn), zinc (Zn), mercury (Hg), copper (Cu), 
cadmium (Cd), calcium (Ca), silver (Ag), a variety of hydrocarbons 
from crude oil, and many more [1]. Clean-up of these heavy metals 
can be an extremely tedious and expensive; in some case, damage 
is irreversible, thereby interfering with the environmental quality 
and overall health of humans and animals [7-9].

Nonpathogenic microbes play a vital role in recycling of waste 
products [10]. Some of their activities include degrading organic 
materials and recycling nutrients in the soil [10], biodegradation, 
wastewater treatment process, and creating alternative energy. 
Microorganisms can degrade household wastes and human wastes 
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through different mechanisms, which include the production 
of energy through the detoxification of harmful pollutants [11]. 
Different naturally occurring microbes in deep waters can consume 
hydrocarbon to facilitate the clean-up process of oil spills [12,13] 
by breaking down the ring structures of hydrocarbons using some 
enzymes [12]. This method has been demonstrated through the 
use of bioleaching [14], which involves bio-oxidation of complex 
metals. Use of microorganisms to control the leachability of toxic 
metals has been favored over the physio-chemical process in recent 
times [15]. However, improper disposal of hazardous waste after 
clean-up can contribute to their release in the environment [12].

Despite several advances made to detect and analyze disposal 
of toxic chemicals, a wide range of undetected contaminants raises 
environmental concern [16]. Environmental contaminants can 
remain mobile or stationary from the point of contamination. The 
biggest hurdle is that no detailed pathway on how these emerging 
pollutants interact with the environment [17,18]. Human activities 
also play a key role in accumulating emerging pollutants such 
as global accumulation of Hg [19]. To address these challenges, 
biotechnology has been used to increase the likelihood of efficient 
recovery and detection of heavy metals in the environment 
[6,15,20,21]. Also, the field of molecular biology and nanotechnology 
have contributed towards a better understanding of the role’s 
microorganisms play in the remediation of environmental pollution 
[22]. This is because of their catalytic, and reusable features 
[23]. This unique characteristic further distinguishes the use of 
biotechnology over the conventional physio-chemical method 
because they are very efficient in environmental conservation.

Different methods such as physical, chemical and biological 
processes have been researched, developed and used to reduce, 
transform and immobilize such environmental pollutants over 
the years. However, each of the methods has advantages and 
disadvantages. This review will evaluate the different sources of 
environmental contaminations, addressing the different strategies 
of bioremediation, and identify possible indicators for monitoring 
environmental pollution in an economical and eco-friendly 
approach.

Biochemical Source of Pollution

Some microorganisms are beneficial towards an efficient 
bioremediation strategy [22], but at the same time, some can 
contribute towards an increased pollution due to their metabolic 
activities in the case Hg transformation and methylation [24-26]. 
Microbes that were not previously considered as part of traditional 
contaminants or known to aid in contamination can now be 
identified from areas of pollution due to evolution of new techniques 
[6], thanks to the recent advances in biotechnology. The new strains 
can be attributed to some resistance genes obtained by some of the 
microbes due to prolonged exposure of contaminants [27]. Owing 
to their resistance and genetic modification, identification of such 
microbes does not follow the conventional method of microbial 
isolation.

Biochemical accumulation of biological substances from 
viruses and bacteria (Micropollutants) known to cause emerging 

and re-emerging waterborne pathogens [27] can be very difficult 
to remove especially in the water system. Micropollutants are 
a result of various activities of microbial processes because of 
prolonged accumulation in the environment either by natural or 
human activities [27]. On the other hand, increase in the chemical 
waste can aid metabolites of micropollutants over the time, thereby 
increasing the likelihood of biological pollution [27].

 As mentioned earlier, agricultural practice can also intensify 
this process [1,16,28,29]. Introduction of fertilizers and pesticides 
into soils can cause health challenges when the chemicals leach 
off into nearby surface and groundwater [30]. Thus, detection of 
pesticides in groundwater around the world has become more 
common [3]. Although some microorganisms contribute to the 
detection of micropollutants within a water source, its mechanism 
is yet unknown [31]. Micropollutants are more abundant in 
Wastewater Treatment Plants (WWTP) compared to other sources 
of contaminations [31]. Introduction of micropollutants from 
WWTP to the landfill stays on the increase because of inadequate 
understanding of some harmful contributions that micropollutants 
causes. However, the efficiency of removing micropollutants 
from effluents by WWTPs depends upon the concentration of the 
pollutants and how efficient the treatment plant is towards the 
removal of such waste [27].

There have been greater numbers of antibiotics detected in 
effluents compared to other drugs and cosmetics flooding the sewer 
system from households; however, only an average of 51.4% of them 
are usually removed [27]. Also, removal of chemical contaminants 
like steroids, or detergents is dependent on its structural stability, 
bioavailability, and biodegradability of such compound [27]. 
Different bacteria and viruses like phages have been employed 
for the detection of pollutants from WWTPs. Biological pollutants 
possess greater risk but can be controlled with a cost-efficient 
process using advanced technologies [3,4]. Although treatment of 
most pollutants requires the aid of some specific microorganisms, 
interdisciplinary approaches can also increase its efficiency.

Strategies for Bioremediation

An aspect of biotechnology that is rapidly growing is 
environmental bioremediation [12,15,32,33]. Bioremediation 
is an emerging area focused on addressing different aspects of 
environmental pollution using microbes and plants occurring 
naturally in an eco-friendly, and cost-efficient way [15]. 
Bioremediation can be divided into four distinct categories: 
removal, separation, degradation, and immobilization [34-36], to 
eliminate or reduce the pollutants through physical, biological, or 
chemical process [31]. Immobilization can occur naturally owing 
to the availability of optimum condition. For bioremediation to be 
considered successful, pollutants must be converted to harmless 
by-products by either microorganisms or plants. Bioremediation 
can be mitigated either within the contaminated site (in situ) 
or total transfer of a contaminant to a different location (ex situ) 
[37]. In-situ is less expensive, less technical and most preferred 
compared to ex-situ during an environmental restoration [16].
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One important aspect of bioremediation is genetic modification, 
which broadens the ability of microbes to target a vast range of 
contaminants under a defined condition [3,6,9,5]. This is through 
the application of genetic and enzymatic strategies to enhance 
energy development and utilization [1,20,38]. Bacteria like Bacillus 
thuringensis, widely known to break hydrocarbons from oil spills, 
were successfully modified to detoxify and consume radioactive 
waste [12]. Plants have also been successfully modified to increase 
their ability to absorb toxic chemicals compared to wild types 
[29,39-43].

Another aspect is the combined actions of different microbes 
identified from a contaminated site [31]. This technology was 
used to reduce the cost of cleaning oil spills from landfills thereby 
improving an approach that favors the environment in a fast and 
efficient manner [21]. The results obtained showed that using 
different microbial groups improves the biodegradation of oil 
contamination, and they also helped in restoring the soil to its 
natural and fertile state [21]. The synergy identified among different 
microorganisms can be attributed to shared enzymatic activities 
that make it easy to effectively degrade oil and waxy substances.

Of all the discussed advantages of bioremediation, it is 
important to acknowledge that some chemical substances can resist 
remediation through the different methods described, and some 
microbes require specialized nutrient for their growth making it 
difficult to inoculate them in the environment [22]. Microbes may 
not efficiently metabolize pollutants and become environmentally 
problematic during the clean-up process resulting in reintroduction 
of the contaminant back into the environment [31]. The interaction 
between microbes and plants can limit the effective removal of 
toxic chemicals [44]. For example, due to the heterogeneous nature 
of microbes in the environment interaction and dependency can be 
limited thereby destabilizing microbial effectiveness. Overall, some 
abiotic factors that can contribute to such limitations as stated 
above include pH, temperature, electron and carbon exchange, 
enzymatic activities, and diversity among the population.

The surface area of contamination is also a determining 
factor towards a successful bioremediation [31]. For example, 
during phytoremediation, the roots of the plants shown to be very 
important in absorbing contaminants [44]. This can help accelerate 
or negatively impact the degradation ability of the plant. Increase 
in the surface area covered by contaminant can result in a less 
effective or more costly remediation process. In other words, the 
size of the plant becomes a deciding factor towards an effective 
phytoremediation. Bioremediation has not been well studied 
and as such is considered an emerging technology that is very 
promising in removing environmental contaminants like toxic 
chemicals from the environment [27]. Biotechnology presents a 
clear understanding of the biotic and abiotic approach towards 
environmental remediation. This includes biodegradation of 
pollutants using microorganisms or biological agents such as 
enzymes [1,15,20,38,45]. Biotechnology is comprised of promising 
techniques in environmental microbiology that have been proven 
to increase the efficiency of bioremediation through the use of 
intracellular and extracellular enzymes [46]. For better clarity, we 

discussed bioremediation in regard to bacteria, yeast, micro-algae, 
fungi, and plants.

Bacteria

Bacteria can remove heavy metals like Hg through the adsorption 
and combination of available amino or carboxyl groups present on 
the cell wall [10]. Their role in detoxification and biodegradation 
of toxicants has been well demonstrated. Such transforming 
ability was exhibited in Chiarella vulgaris and Zoogloea ramigera 
[47]. Gram-positive bacteria, owing to their tick cell wall have 
been shown to have a great ability to absorb heavy metals. Most 
of these gram-positive bacteria, Actinomycetes, Azotobacter and 
Pseudomonas have been shown to synthesize metals like Fe (II) as 
part of their normal metabolism [48]. As a beneficial process, they 
use this metal as their source of energy. Because they spend Fe (II) 
as part of their metabolic activities, such metal can be efficiently 
recycled from the environment [48].

Another promising area that bacteria have been applied to 
widely is in hydrocarbon degradation [21,49]. This has been 
demonstrated through the breaking of complex hydrocarbon 
molecules by Pseudomonas considered to be “fuel consuming” 
bacteria [50]. A special strain of Pseudomonas, P. syringae can even 
accumulate metals like Ca2+, Mn3+, Cd2+, Zn2+, Cu2+, and Hg2+, 
while Fe (III) reducing Geobacter matallireducens can also oxidize 
aromatic hydrocarbons like benzene [51]. The synergetic effect of 
Acinetobacter calcoaceticus and Alcaligenes odorans, and other 
tropical soil isolates of Serratia marcescens is effective in removing 
and breaking hydrocarbons within two weeks [13,49].

 Other forms of contamination that are mostly encountered 
because of agricultural activities are pesticides. Pesticides are great 
contaminator of the aquatic system, killing most of its habitats 
like fish and eventually humans [17,30]. Other chemicals can also 
contaminate the aquatic system through other processes, which 
may lead to neurotoxicity. Some pesticides used for agricultural 
purposes include α-endosulfan and β-endosulfan. They were 
efficiently degraded by Pseudomonas sp. and Arthrobacter sp. as 
short as one week [52]. However, it was reported that increasing 
concentration of chlorpyrifos above 50 mg/L can inhibit the 
effectiveness of Pseudomonas aeruginosa [53]. This demonstrates 
that factors like chemical concentration can influence the efficiency 
of bacteria to remediate compounds like pesticide efficiently. Some 
of the bacteria involved in bioremediation are summarized on Table 
1.

Yeast

Another aspect of bioremediation that has received attention 
is the use of yeast to remediate environmental pollutants. Yeasts 
are known to withstand unfavorable environmental conditions, 
making them ideal for bioremediation [13,54]. Most yeasts are 
catalytically and structurally functional in decolorizing dye 
produced in effluents from food and textile industries [55] through 
extracellular absorption and adsorption [56]. Species of yeasts 
that have been recorded to be vital towards bioremediation are 
summarized on Table 1, and they include Pichia, Rhodosporidium, 
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Leucosporidium, Rhodotorula, Sporidiobolus, Sporobolomyces, 
Trichosporon, Yarrowia, Stephanoascus, Clavispora, Candida and 
Debaryomyces [57]. Candida has a special characteristic to be 
environmentally susceptible to harsh conditions. Candida utilis 
has demonstrated the ability to accumulate radionuclides and 
shown to remove cadmium in its soluble form [58]. Furthermore, 
Canida can breakdown hydrocarbons from a crude oil spill in a 

short period. Candida tropicalis isolated from tropical soil was 
shown to effectively remove hydrocarbons from oil spill for as short 
as two weeks [13]. Some other spices of yeast like Rhodotorula 
mucilaginosa and Pichia guilliermondii have also demonstrated the 
adsorption and uptake ability of other heavy metals like silver, and 
chromium (III and VI) [59].

Table 1: Different microorganisms proven to treat various environmental contaminants.

Category Contaminant Group Family/genus Species Interaction References

Bacteria

Heavy metals
Hg, Ca, Cr,

Mn, Cu, Cd, and Zn
Pseudomonas 

Serratia
Syringae 

marcescens Independent [49,51]

Radioactive

waste
Bacillus Thuringensis Independent [12]

Aromatic

Hydrocarbons 
Oil spill

Geobacter Matallireducens Independent [51]

Acinetobacter Calcoaceticus Synergetic [13,49]

Alcaligenes odorans

Serratia marcescens

Candida tropicalis

Pesticides
a-endosulfan,

and b-endosulfan

Pseudomonas Aeruginosa Synergetic [52,53]

Arthrobacter Sp.

Yeast Heavy metals
Ca

Ag and Cr 

Candida utilis Independent [58]

Rhodotorula mucilaginosa Synergy [59]

Pichia guilliermondii

Algae
Diary industries 

and waste 
treatment plants

Aphanocapsa Sp.

Oscillatoria salina Independent [64-67]

Plectonema terebrans

Synechococcus Sp.

Anabaena inaequalis

Chlorella Sp.

Stigeoclonium tenue

westiellopsis prolifica

Fungi

Xenobiotic 
degradation

Lignin from wood 
debries

Polyporus Sp. Synergetic [33,71]

Phanaerochaete chrysosporium

Cyathus Bulleri Synergetic [72]

Phanaerochaete chrysosporium

Diesel waste

in soil Aromatic
Polycyclic

Pleurotus Ostreanus Independent [73]

Stenotrophomonas Maltophilia Synergetic [74]

Hydrocarbon Penicillium janthinellum

Heavy metal

Cu [II], Cd [II],

3,5-

dichlorophenol, 
Ametryn, and 

Acephate

Escherichia coli Synergetic [60, 75]

Bacillus subtilis

Saccharomyces cerevisiae

Green Plants Heavy metals on 
plant roots

Cd and Zn, Cu, Pb, Ni, 
and Cr Salix viminlais Independent [40]

Heavy metals on 
plant leaves Pb, Ni, and Co Pteridium esculentum Independent [79]
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As mentioned earlier, availability of essential nutrients can 
improve the rate at which microorganism absorb toxic pollutants. 
In the presence of riboflavin, the ability of Pichia sp. to resist 
chromium increases compared to when riboflavin is limited [54]. 
There was no explanation of how and why this happens. The 
need for a more interdisciplinary approach is very important to 
fully understand the best way to optimize this promising area of 
environmental bioremediation.

Phycoremediation

Phycoremediation is the use of micro-algae for the removal 
or toxicity reduction of biotransformable pollutants from the 
environment [11]. Phycoremediation is very wide-ranged 
because of the ability of algae to withstand harsh environmental 
conditions [12]. Algae can grow independently or dependently 
in the environment, most especially in the deep-sea horizon like 
oceans and lakes [11]. Algae are mostly primitive photosynthetic 
multicellular organisms with chlorophyll; however, they lack true 
characteristics of terrestrial plant such as true leaves, stems and 
roots. One of the ways that make algae environmentally important 
in the aquatic system is their ability to reduce the Biological 
Oxygen Demand (BOD), adjustment of pH to a safer form, and 
remove toxic metals from sludge [60]. Reduced BOD level can be 
achieved through the metabolic process of algae to make more 
O2 by fixing CO2, thereby making the aquatic system bio-stable 
[11]. Algae can control environmental contaminants through the 
intracellular accumulation of heavy metals and organic pollutants; 
they can also cycle nitrogen to a more useful form [61]. The most 
likely mechanism that explains how algae detoxify toxic metals 
involves physical adsorption, subsequently transported into the 
cytoplasm through a process described as chemisorption and 
finally intracellular uptake [62]. Algae play an important role in the 
removal of toxic contaminants from the aquatic environment. They 
have also been considered as a multifunctional polymer because of 
their ability to sequester toxic metals within their cell wall. These 
processes and more are widely applied in textile industries and 
mostly WWTP [55,63].

Cyanobacteria and blue-green algae have been shown to be 
economical and can withstand extreme environmental conditions 
ranging from salinity, temperature and nutritional composition 
[12]. Species like Aphanocapsa sp., Oscillatoria salina, plectonema 
terebrans, Synechococcus sp., Anabaena inaequalis, Chlorella sp., 
Stigeoclonium tenue, and Westiellopsis prolifica has been used as 
a bioremediating agent in dairy industries, water treatment plants, 
and industrial effluents like oil spill removing over 75% of toxic 
wastes [64-67]. While algae are naturally occurring and removal 
of pollutants occur concurrently as part of their normal metabolic 
activities some algae are expected to be more effective than others. 
This feature makes application of algae that are more susceptible 
to harsh environmental condition suitable and inexpensive method 
to safely remediate environmental pollutants compared to other 
physical remediation processes. Some of the algae involved in 
bioremediation are summarized in Table 1.

Mycoremediation

Mycoremediation involves the effective use of mycelium from 
fungi to bioremediate toxic environmental chemicals. The surface 
ratio of the fungal cell is very important in its ability to withstand 
the high concentration of toxic chemicals through mechanical 
and enzymatic activities when in contact with the environment 
[68,69]. This may not be possible if the toxic compounds are 
directly introduced into the cells. Unlike phycoremediation, 
mycoremediation is more effective with acids and extracellular 
enzymes produced from fungal mycelia that can breakdown 
cellulose [12]. Some other factors like organic acid, chelators, and 
flexible pH also contribute towards the process of bioremediation by 
fungi [70]. The key challenge with this process is the identification 
of suitable fungi that can produce such enzymes.

Some of such fungi that have been identified to be an ideal model 
to understand xenobiotic degradation are summarized in Table 1. 
They include Polyporus sp., and Phanaerochaete chrysosporium, 
with the help of the enzymes that they produced [33,71]. Apart 
from degrading complex carbons, Synergetic action of Cyathus 
bulleri and enzymes secreted by Phanaerochaete chrysosporium 
can be used to degrade lignin from debries of woods [72]. Pleurotus 
ostreanus detoxified up to 95% of diesel contaminated soil within 
four weeks by using its mycelial [73]. The results from the study 
suggested that the ability of fungi to degrade toxic pollutants 
lies between the interaction of its intracellular and extracellular 
enzymes [73]; however, such report is yet inconclusive as there 
is no strong evidence supporting such claims. In other words, a 
more biochemical analysis is needed to better understand the full 
mechanism of how this process works in other to fully utilize the 
bioremediation potentials of most fungi.

Also, fungal genes that code for degenerative enzymes as 
described above can be cloned into bacteria for an effective result. 
Fungi can even be genetically modified to thrive better in a broad 
range of environmental contaminant. Another alternative is to co-
culture fungi with bacteria since we know that pure culture can 
hardly be obtained in the environment. The benefit of co-culture 
between bacteria and fungi was described using Stenotrophomonas 
maltophilia and Penicillium janthinellum respectively to degrade 
polycyclic aromatic hydrocarbons effectively compared to when 
tested independently [74]. Combination of gram-negative bacteria 
(Escherichia. coli), gram-positive bacteria (Bacillus subtilis), and 
fungus (Saccharomyces cerevisiae) at a specific ratio 2:2:1 showed 
great specificity against Cu (II), Cd (II), 3,5- dichlorophenol, 
Ametryn, and Acephate [75]. The synergetic effect above showed 
significant sensitivity when the bacteria and fungi formed balanced 
association. Developing a more detailed association between 
fungi and bacteria can help improve identification and recovery of 
contaminated ecological habitats.

Phytoremediation

Phytoremediation is a low-cost remediation method that uses 
a specific green plant to remove environmental contaminants 

http://dx.doi.org/10.26717/BJSTR.2019.13.002390


Biomedical Journal of Scientific & Technical Research 

Cite this article: Timothy E E, Ali S, Carrie A S, Rajnish S, Yazeed A, et al. Strategies for Remediating Environmental Pollution, and Applicable In-
dicators for Identifying them: Mini Review. Biomed J Sci & Tech Res 13(3)-2019. BJSTR. MS.ID.002390. DOI: 10.26717/ BJSTR.2019.13.002390.

Volume 13- Issue 3: 2019

9931

from soil, sludge, sediment, surface and groundwater, and air in-
situ[39,76]. It is a fast and environmentally friendly way of removing 
contaminants, thereby preserving the properties of the soil without 
adjusting its chemical composition and maintaining the microbial 
biomass [77]. Most of the plants involved in remediation are 
categorized either as hyperaccumulator or non-hyperaccumulator  
[29]. Hyperaccumulator does not require any supplemental 
metalloenzymes chelated for its efficiency to take up heavy metals 
compared to non-hyperaccumulator that require such. Some of 
the plants identified to be hyperaccumulator of pollutants include 
Astragalus racemosus, Haumaniastrum robertii, Ipomea alpine, 
Thlaspi caerulescens and Sebertia acuminate [29].

There are different mechanisms that have been proposed to 
be involved with phytoremediation [40]. First, is phytoextraction, 
this is a process that involves the direct uptake and degradation 
of organic pollutants within the plant’s? vacuole and second, with 
enzymes (laccase, nitrilase, dehalogenase, and nitroreductase) or 
through another process known as rhizoremediation that involves 
the use of modified microbes within the rhizosphere that can be 
integrated into the soil or water [43,44,96]. Salix viminlais and 
Pteridium esculentum are good examples of rhizofiltration and phy-
toextractor respectively. Salix viminlais was shown to concentrate 
heavy metals from the root to the shoot of the plant and Pteridium 
esculentum was able to accumulate heavy metals in the leaves of 
the plant [40,79]. This process is very reliable in cleaning up en-
vironmental contamination at a much faster rate. Another mecha-
nism involves the removal of metals bound to the soil through the 
help of specific plasma membrane such as metal reductase from the 
roots to acidify the toxic metals [80,81]. Some of the green plants 
involved in remediation are summarized on Table 1.

The presence of enzymes produced by plants during 
phytoremediation also increases the ability of microorganisms that 
are present in the rhizosphere to degrade other pollutants [78,82], 
and increase the bioavailability of metals [42]. This process helps 
to increase co-metabolism and as well improve the rate at which 
pollutants are removed through the combined effort of both 
microorganisms and plant. Another important note is that harvested 
plants that have been used to remediate toxic metals can be properly 
recycled without introducing other chemical complexity in the 
environment [43]. Constant circulation of rhizofiltration increases 
its ability to breakdown toxic metals without interfering with the 
environment; this attribute might make it more advantageous over 
phytoextraction.

Biological Indicators/Monitors

With increased health challenges, due to rapid environmental 
contamination, the need for rapid indicators that can detect the 
presence of contaminants in the environment is very important. 
Bioindicators are biological species that can exist as single species 
or in communities to help evaluate the quality and change of an 
environment over time [83]. Although microbial communities 
can make good indicators of environmental change, changes to 
the community due to other environmental factors can influence 
the authenticity of the result obtained [83]. Single species can 

also become too sensitive to environmental conditions, thereby 
making it difficult to depend on its result. Some few examples 
of bioindicators are algae (Chlorella ellipsoidea), macrophyte 
(Fontinalis antipyretica), crustacean (Daphnia magna), insects 
(Ischnura elegans), gastropod (Cipangopaludina cahayenisis), fish 
(zebrafish), amphibian, nematodes, and plants [84,85]. Fishes like 
Cutthroat trout and Oreochromis niloticus have been used to detect 
changes in water temperature over time [83,86], because they are 
very sensitive to high temperature. Their heat shock gene can be 
used to detect thermal stress. Moss (Hylocomium splendens) was 
used in northwestern Alaska to estimate the influence of overland 
transport of heavy metals on surrounding terrestrial biota [87]. An 
integrated biological response has been used to stimulate a more 
effective biomonitoring system towards desired operational goals 
and provide more practical information.

There is a broad difference between bioindicators and 
biomonitors, bioindicators are qualitative while biomonitors 
are quantitative [1,83]. Bioindicators are used to access biotic 
response due to environmental stress, while biomonitoring is used 
to identify the severity of pollution. Some of the biomonitoring 
approaches include evaluation of biota population, use of bacteria 
to test for acute toxicity, and residual analysis. For example, the use 
of bioluminescent bacteria can help in the detection of organic and 
inorganic pollutants [20,88]. This approach deals with genetically 
modified bacteria that emit light. Luminescent organisms were 
used to detect pollutants in wastewater, seawater, surface and 
groundwater, soil and sediments, and air as a biomonitor [20], they 
are very sensitive, fast and accurate because of their affinity with 
chemical contaminants. Plants can also be beneficial in monitoring 
environmental contamination like identical perennial shrub Rosa 
rugose [89]. It was successfully used to monitor the accumulation 
of heavy metals like lead in different areas over time.

Although the concentration of contaminants can occur at a very 
low rate, bioindicators have shown to be a suitable technique for 
the detection of such contaminant. So many other contaminations 
occur because of indirect pollution. For example, a sewage pipe 
releasing nitrate into an aquatic system can alter the ecological 
balance of the aqua system. Therefore, an increase in some species 
that solely use nitrate can indicate an unusual increase in nitrate. 
This is very applicable since the main goal when using bioindicator 
is to use single sensitive species or group of species to evaluate 
the changes happening within a complex environment over time 
[75,83].

Indicators of Environmental Pollution

Natural occurring microorganisms or plants can degrade an 
environmental pollutant as part of their normal metabolism or as 
part of a process known as co-metabolism [90,91]. Co- metabolism 
is the mutual degradation of a compound due to the combined effort 
of different microorganisms trying to metabolize natural occurring 
elements vital to their natural metabolism biochemically [90-93], 
in return, they may increase the toxicity of such compound. Co- 
metabolism can also be described as the use of energy obtained from 
oxidation? process to maintain microbial growth [94]. One example 
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of such activity is the methylation of Hg. Mercury methylation is 
increased in the presence of augmented natural organic matter 
compared to when reduced [95]. Also, in the presence of Zn, 
Dunalliela tertiolecta can become more tolerant towards other 
heavy metals like Hg, Pb, Cu, and Cd [96]. Biodegradable organic 
matter can easily be manipulated using either aerobic or anaerobic 
microbes. However, it has been suggested that due to possible 
microbial degradation, aerobic organisms favor bioremediation 
more when compared to anaerobic organisms [97]. 

Bacteria like Bacillus, Pseudomonas, and Streptomyces have 
been used to demonstrate the ability of bacteria to be effective 
biosorption tools against pollutants (chromium (VI), lead (II), 
and hydrocarbons) both in sediments and in solution [50,98,99]. 
Because aerobic and anaerobic organisms degrade chemical 
compounds through different unique pathways such as oxidation, 
reduction and even through hydrolysis, a detailed understanding 
of selected organisms is important to adequately utilize the full 
benefit of such organism.

Several mechanisms are involved in the use of microbes to 
reduce environmental waste; however, no conclusive mechanism 
has been reported [100,101]. Some of these mechanisms include 
intracellular uptake, sorption, and extracellular accumulation 
[63,102,103]. These three steps are vital in accessing the different 
mechanisms that microbes use to detoxify metals. Some of the 
processes might require the use of live cells, the formation of 
complex chemical molecules on the cell membrane of the bacteria 
and precipitation of toxic chemicals to a less toxic form. Living 
cells are mostly involved in the intracellular accumulation and 
metabolism; however, intracellular accumulation pollutants can 
be facilitated in both living and dead cells [10,104]. Dead cells are 
most preferred because it is easy to clean-up after use and does not 
require additional nutrient to improve the biomass of the bacteria 
cells [69].

For a successful bioremediation using microorganisms, the 
environmental condition must be carefully monitored for favorable 
microbial growth [3,7]. The presence of adjacent nutrients 
can increase the robustness of microbial growth and impact 
bioremediation effectiveness [12]. This interaction can increase or 
decrease microbial effectiveness to breakdown toxic chemicals. For 
example, interaction between Ganoderma lucidum and Aspergillus 
niger demonstrated an effective ion exchange when inoculated 
together and as such increased the reduction of chromium [105]. 
Bioremediation involves much more microorganisms and plants 
than already demonstrated in the literature.

Other Bioremediation Strategies

There are different environmental clean-up processes such 
as the conventional physiochemical process, which removes the 
contaminants only from the point of contamination and introduces 
it to another uncontaminated site [31]; this can occur during 
transport of the contaminant to the disposal site. Techniques like 
this can be very expensive, and in some cases the pollutant will not 
be detoxified, this method leaves a vast health and environmental 

concern when the contaminant is not properly handled [19]. The 
second method is the use of Ultra-Violet (UV) radiation, which is 
very expensive. Regardless of the ability to use UV oxidation to 
remove contaminants like inorganic hydrocarbons, continued 
exposure to UV can be very detrimental to health [32]. However, 
these limitations and more can be addressed through the help of 
emerging technology. Processes of biotechnology can inactivate 
environmental contaminants and transform them to a more 
biodegradable form that is practical, and safe without causing more 
damage and harm to the environment [50,52].

Summary/Discussion

There has been a wide use of the word “green” to describe 
effective environmental restoration such as bioremediation; 
however, most of the effective bioremediation strategies do not 
necessarily use a “green” approach. Application of bioremediation 
involves both green (plant) and non-green (microorganism) 
approaches. The use of microorganisms to remove toxic chemicals 
was found to be very safe and efficient because they can use the 
chemical compounds as a carbon source and then convert them to 
a less toxic form. This process was shown to be possible through 
an enzymatically attack or intracellular metabolism of such 
toxic compound. To better understand the suitable approach of 
bioremediation, the question where and how the method will be 
used must be answered to address whether an in situ or ex-situ 
method will be necessary. Although there are several strategies 
or applications of bioremediation as discussed in this review, a 
better understanding of the mechanism involved will increase the 
effective application of this emerging area of biotechnology. Also, 
uniformity of methodology must be adopted for proper reliability 
and reproducibility. This will help improve each approach for a 
better application.

Different enzymes play different roles during bioremediation 
to humidify, oxidize and transform different phenolic aromatic 
substances by some bacteria that are present in the soil. Enzymes 
like oxidoreductase, oxygenase, monooxygenase, dioxygenase, 
and laccase have been used by bacteria, insects, fungi and plants 
to degrade phenolic and aromatic compounds [38]. Bacteria that 
secrete an enzyme can be modified or incorporated into a higher 
system like yeast with a different enzymatic activity to detoxify a 
wide range of toxic chemicals in the environment. This can help 
improve an early detection of environmental contamination before 
it spreads beyond control, when a close and continual monitoring is 
applied with the help of microorganisms and some plants.

 Some other areas that need to be tapped into include the area of 
biomonitoring and bioidentification. This approach can be possible 
with the help of genetic sensing. Use of genetically modified 
microbes can improve the degradation of pollutants from soil, air, 
water and even industrial effluents. This is another emerging area 
of ecotoxicology that can be very helpful in detecting the abundance 
of different contaminants using microorganisms. Understanding 
the broad array of microbial abundance can help estimate the 
likelihood of contamination and can be a big step forward towards 
enhanced ecological risk assessment. This could open a new era 

http://dx.doi.org/10.26717/BJSTR.2019.13.002390


Biomedical Journal of Scientific & Technical Research 

Cite this article: Timothy E E, Ali S, Carrie A S, Rajnish S, Yazeed A, et al. Strategies for Remediating Environmental Pollution, and Applicable In-
dicators for Identifying them: Mini Review. Biomed J Sci & Tech Res 13(3)-2019. BJSTR. MS.ID.002390. DOI: 10.26717/ BJSTR.2019.13.002390.

Volume 13- Issue 3: 2019

9933

that could perhaps remediate chemical wastes within its early 
stage before it spreads beyond control since the distribution rate 
of contaminants is essential for an effective remediation. A broader 
understanding of how bacteria and other naturally occurring 
species such as? fungi and plants can be used to produce a more 
efficient result in both biomonitoring and bioremediation will be a 
breakthrough.
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