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Introduction
The broader agenda of this model is to especially understand 

the conditions leading to the estimation of behavioral bias [1] 
by including a fundamental modeling perspective with the 
cultural evolutionary process [2].  Bias (or systemic risk) is a 
property of systems of interconnected components, and can be 
defined as “system instability, potentially catastrophic, caused 
or exacerbated by idiosyncratic events” [3]. Investigations have 
been risk for various high-profile disasters, describing it as posing 
the likelihood of cascading failures [4] because of the complex 
interactions that can take place among individual system elements 
or through their association [5]. The context-varying mechanical 
flux on the system’s bias is, in fact, very complex [6]. In view 
of all these possible distortions and patterns of influences, the 
possibility of quantifying bias within a system and capturing its  
size needs to be established. Where an event in a particular form  

 
could trigger instability or collapse an entire system, regardless of 
the capability of the individual system elements at that point, it is 
possible to quantify with specificity the mechanisms underlying the 
computerized model implementation. 

To achieve this, the mechanisms attempt to address one 
of the common issues of a dynamic spatial environment using 
relative interconnectedness. This provides critical aspects of 
the heterogeneity in decision-making that help us to estimate 
the likelihood of the behaviour propagation that agents produce 
and how their biases relate to the networked effects [7]. This 
justification may suggest the prototype of an approach to spatial 
modeling that can be established simply by gauging a vector and 
matrix algebra when the considerable costs of complex interactions 
are introduced into highly interactive dynamics [8]. 
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ARTICLE INFO Abstract

The primary purpose of this study is to use a spatially explicit model of mobile 
agents in two-dimensional continuous space to understand the conditions that lead 
to the estimation of Systemic bias. By integrating behavioral algorithms with social 
dynamics, the model attempts to (i) capture emergent phenomena; (ii) provide a 
natural description of a pattern of behavior; and (iii) allow realistic adaptation to be 
understood. The behavioral pattern results from individual components being applied 
not only from an autonomous agent’s internal trait (individual velocity-group velocity 
trade-off) but also from its interconnected circumstance (network characteristics). The 
range of different combinations of some initial bias values (scalar in the internal trait and 
the external trait) play a part in the rapid propagation in the system or put the system 
into even more jeopardy. However, when the mutual relations between internal trait, 
which are the basis of external traits, are applied, the widespread heterogeneity due to 
systemic bias can reduce the repertoire of displayed behaviors. The mechanisms of the 
artificially modelled structure can explain how to mitigate an individual’s homogeneous 
drives and patterns of behavior.
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This simulation would be a spatially explicit mobility process 
in which the individuals can move around their environment [9]. 
The primary feature of the agents is reflexive, based on simple 
rules where agents react to what is around them (i.e., reflexively). 
However, the agents are seeking to achieve a goal-steering direction 
in their surrounding environment (goal-based). The action that an 
agent then takes, given that the environment is the same, may be 
different based not only on that agent’s decisions but also on its 
strategies in terms of learning from nearby agents and by taking 
various actions over time (adaptive). Thus, by incorporating 
behavioral algorithms with the network dynamics, this model can 
(i) capture emergent phenomena; (ii) provide a natural description 
of a pattern of behavior; and (iii) allow a realistic understanding 
adaptation [10]. 

Methods(model)
This model tests continuous traits features via social 

learning and demonstrates how to create customized interacting 
components to deal with behavioral patterns. Agents try to find a 
position in the same way as their neighbors do, while maintaining 
a certain velocity. The positions of all individuals are vector 
quantities (displacement) from a random initial position confined 
to a continuous space. The scaling for the different components of 
internal (movement) and external (network) is crucial to the way 
this system functions, and each step computes the new vector and 
generates a new position according to the social learning, the detail 
of which follow.

Mathematical Representation of The Model

In computation, there are rules of thumb that we can implement 
into an algorithm to help it solve many problems. These do not 
work in every case, and we do not need them to. We need them 
to work for a problem for which we have devoted more effort to 
optimizing them. One case to which we have given great attention is 
linear programming. The fundamental idea is that we have a matrix 
A, a vector B, and we want to find vectors such that i.e., Ax is less 
than or equal to B;

    { }| ,nx Ax B∈ ≤  n n=

 dimensional set of real numbers

For example, each entry of vector A is the corresponding entry 
of vector B, which shows up all the time in optimization. The 
heuristic here is that if we have a problem that we really want to 
solve because of the amount of effort that people have put into it, 
we could try reducing it to one of these problems and plugging 
it into the solvers that exist. Instead of making the task hard for 
ourselves, we reduce our problem to find a reduction in programing 
within which the existing algorithms can work well, such that linear 
programing can take advantage of many complex algorithms. We 
put forward the proposition that the agents are physically related to 
each other, allowing them to move anywhere in the space. The set of 
n-tuples denoted by nR , is called n-spaces. 

( )1 2 3, , ..., n
nx x x x x= ∈

A particular n-tuples in n


 is what is called the coordinates, 
components, or elements of x. To implement each coordinate, let us 
note that the element appears in a row (i) and column (j) because 
this is one of the standard ways in which the agents can move 
around the space. The rows of this form are the m horizontal lists, 
and the columns of the matrix are then vertical lists of n, frequently 
written m×n. 

 

11 12 1

21 22 2

1 2

...

...
... ... ... ...
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n

n

m m mn

a a a
a a a

A

a a a

 
 
 =
 
 
 

Where matrix A’s entry a11 refers to the matrix A’s row 1 column 
1, a12 is A’s row 1 column 2, and keep going all the way to row 1 
column n. Then matrix A goes down; entry a21 refers to row 2 
column 1 of matrix A, and it continues down to row m column n. In 
fact, let us define some operations used by the matrix and vectors 
( )x
 to interact with each other. To do this, we take the product of 

the matrix and the calculated vector. The definition only works if 
A multiplied by the vector has the same number of components as 
A has columns. This is only valid for the vector that looks like this:

  

111 12 1

21 22 2 2

1 2

...
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... ... ... ... ...

...

n

n

m m mn n

xa a a
a a a xA

a a a x

  
  
  =   
  
    







Where the vector ( )x


 components are equal to the number of 
columns in the matrix A. Simply put, this product is A times the 
vector Ax

  and is equal to

 

11 1 12 2 1

22 2 22 2 2

1 1 2 2

...

...

...... ... ...

...

n n

n n

m m mn n

a x a x a x

a x a x a xAx

a x a x a x

 + +
 

+ + =  + 
 + + 

  

  



  

Where, the vector matrix corresponds to the first component 
of the matrix, times the first components of the vector, plus the 
second components of the matrix, times the second components of 
the vector, all the way to the nth component plus nth component.

  

111 1 12 2 1

222 2 22 2 2

1 1 2 2

...

...

... ...... ... ...

...
 

n n

n n

nm m mn n

ya x a x a x
ya x a x a xAx y

ya x a x a x

  + +
  
 + + = = =   +   
  + +   



  



  

 



  

Here, we realize that the product is an A=m×n matrix, 
multiplying m by x



=n*1, and this is essentially the product of the 
vector of the column because the result is simply m*1. Now, based 
on this definition set, let us apply the matrix with the model’s actual 
components. For the group’s heading a

 ;
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as well as for the coherence toward the center of the group b


;
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Where, the model’s primary elements gave the matrix A 
multiplied by the vector of group’s heading produces Aa



, the 
matrix B is the coherence toward center of the b



 produces Bb


. In 
other words, if the main element of the model provided matrix A 
muliplied by the product of the group heading vector, then matrix 
B is consistent for the center of production B. The matrices A and 
B here are m×n (m rows and n columns) dimensional matrix of the 
same size, and each result is the simple product of the n×1 matrix of 
each n -dimensional vector, denoted by :

  

1 1 1

2 2 2

... ... ..

  
 

.
 

  
n n n

Aa Bb Cu

Aa Bb CuCu

Aa Bb Cu

   +
   

+   = =   
   

+      

  

  



  

The matrices then include another quantity related to the 
individual’s current movement υ

 ,
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Here, multiplying the matrix D by the individual’s motion ν


 
produces Dν



, and the matrix Cu
  produces Eω



 added by the Dν


, or 
subtracted by Dν



 [when the new vector length of an individuals’ is 
less than that of a group]. 

                 

( )
( )

( )

1
1 1 1 1 1

22 2 2 2 2  ,
... ... ... ... ......

n n n n nn

DCu D E Cu E
DCu D E Cu EE or E

Cu D E Cu ED

νν ω ω
νν ω ω

ω ω

ν ω ων

 −     + +      −+ +     = = = =          + +         − 



    



    

 

    









Here, the result Eω
  is simply m -dimensional vector, in that the 

number of n columns in each matrix has to match the dimension 
of each vector, and the new vector ( Eω

 ) matrix’s m rows has to 
be equal to the matrix rows in C and D. For example, with 3 x 3 
matrices (3 basis inputs [columns] and 3 coordinates landing spots 
[rows]), if Cu

  and Du
 , 

show that E Cu Duω = +
    or ( )E Cu Duω = + −

  

3 2 1 0 2 1 5 1 3
4 4 2 1 3 2 0 1 5
2 1 1 1 1 0 1 0 1

Cu Du
 + + − −  − 
  + = − − + + = −  
  − + − − + − −  

 

3 ( 2) 1 ( 0) 2 ( 1) 1 1 1
( ) 4 ( 4) 2 ( 1) 3 ( 2) 8 3 1

2 ( 1) 1 ( 1) 1 ( 0) 3 2 1
Cu Du

 + − + − − − −  − 
  + − = − − − + − + − = −  
  − + − − − − + − − −  

 

Using this product, the model assumes that the matrix-vector 
operations result in the subset of Dv



 with respect to the elements in 

ν
  decides the individual’s new position, while the a



 and b


 simply 
represent its averaged group quantities. Thus, as we explained in 
the mechanisms of the mathematical description, the operations of 
valid quantities depends on ( )n nR V R⊆ , so that the property of the 
subset becomes { | }D Vν ν ∈

   , and the ν
 are as follows;
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Here iν


 is the individual velocity 
2 2

2 2

( , )
[ , , ]x y

x y

x y

i i
i i i i i i i

i i

d d
ν ν

ν ν ν ν ν
ν ν

= ∗ = + =
+

 



 where the velocity of the in-
dividua is represented by its size (‖vi‖ = the length of individual’s 

magnitude) along with the direction of individual ( id


). The avgv


is 

averaged velocity 1
1 || || *N

iavg i avg avgv d
n

ν ν== =∑
  

  and covers the heading 
of the entire population of individuals. All of the where Dv

  is equla 

to iυ


and υ


 is a member of the V { }|i iDv Vν ν ν= + ∈
   

are valid. For 
the product of the matrix by a scalar k [=IGT: the increase in the 
individual’s velocity (

iv


) resulted in a loss of group heading ( avgv


)] 

[11], and the (1 || ||)* || || *i avgk v k v− +
 

recorded is the matrix obtained 
by multiplying each element by k.
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Observe that elements multiplied by k. 
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Next, for the network characteristics [12, 13], we denote 

|| || * ,s sv vs d=
 

 where sv


 is a vector whose length ‖vs‖ and 
direction d s

  are a function of the Network Density (ND). Network 
density is calculated by measuring the actual connection (AC) and 
the Potential Connection (PC) of the network from its social ties 
[‖vs‖=ND=AC/PC, AC=(2*t)/N, PC=N(N-1)/2]. Here, the network 
density (‖vs‖) describes the potential connections of the network 
which are actual connections (AC/PC).  The potential connection 
(PC=N(N-1)/2) is a connection that could potentially exist between 
two individuals irrespective of whether it actually does or not. This 
individual could know that individual; this object could connect 
to that one. Whether or not they do connect is irrelevant when 
we are talking about a potential connection. By contrast, an actual 
connection (AC=(2*t)/N) is one that actually exists. This individual 
does know that individual; this object is connected to that one. For 
example, in the living room of a house, connections could be 100% 
of all potential relationships. In contrast, the actual connections on 
a public bus are likely to be significantly lower than all the potential 
relationships because the number of people who actually know 
each other (actual connection) is probably low.
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Here, the network characteristics are influenced by the mutation 
[14] rate (k’ = scalar) obtained by adding the corresponding
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Reflect that even on a public bus, any individuals can connect 
with any other, even if none of them know the other in their actual 
connection (if one individual offers the highest payoff). In a house, 
anyone can bring a guest into their living room. Here, the k’ controls 
how fast the transition function propagates in the network, and how 
fast the new position vector takes into account network density. That 
could make the others modify the actual connection. The structural 
instability of the dynamics of these small linear contributions can 

be interpreted as the network characteristics being influenced 
by the exploration rate (k’ = scalar) which corresponds to a 
mutation term in genetics. Finally, the model proposes to adopt 
an existing possible interconnected relationship between the 
network and its movement characteristics as another scalar   

,
|| ||" , || || * || || [|| " || (1 || ||) 2 || ' |||| ||], ' [0,1]
|| ||

id
sss ss ss ss ss
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K v d K K kν ν ν ν ν
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the product of the matrix B by a scalar k” obtained by 
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The fundamental properties of all combination are easily 
achieved via the operations of a matrix such as the one above. 
The model now considers an adoption probability which is given 
by an estimate of individuals’ velocity. Indeed, as no individual 
may know the exact value of a trait that has adopted the another 
individual’s velocity, this model yields that individuals can estimate 
the value at every schedule of each generation via a comparison 

( ) 1[1 ]f rp eυ π π− −= + . Here πf is a velocity of the focal individual, 
πr is a velocity of a role individual, e denotes the exponential, and 
ω is an intensity of the selection. The focal individual imitates the 
velocity of the nearby role individual comparing its new position 
vector, and then the focal individual chooses to imitate the role 
individual’s strategy (ω < 1 = weak selection, ω→∞ = strong 
selection). The model applied this trait in three implementations 
(see Results section) each time expecting a different assessment of 
evolutionary patterns from the model mechanisms above. 

Results
We can draw a number of conclusions regarding the operational 

principles mentioned in the mathematical description above. First, 
each individual’s velocity determines the change from timestep 
to timestep after its initial separation from any other individual. 
There is social learning about who needs to look for and copy its 
neighbors. The trade-offs are possible in the relationships between 
the number of individuals and the number of groups, and these are 
determined on the basis of a difficulty index that is a function of the 
ratio between the number of individuals and the number of groups. 
Their external properties come from network characteristics 
representing social ties, and mutations are related to how quickly 
the risk function propagates throughout the network. Indeed, the 
movement is affected by the trade-off between the direction of the 
individual velocity-group and and their actions, including their 
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network properties, based on social ties multiplied by the rate of 
mutations. Such dynamics take into the relativity of the interactions 

of individual movements and their network characteristics as 
follows (Figure 1).

 

Figure 1:  Estimation of the behaviour underlying internal (individual movement) characteristics: bias = scalar for IGT.

Note: The simulation shows that a displacement separates the individuals into a relative position structure controlled by the 
average rate of exploration (See Figure 1 [left]). Although the pattern of the group behavior depends on a localized view of the 
other individuals, it can be seen that a slight change in the individual movement characteristics based on the speed of heading 
in their portraits significantly diverging (or converging). Group heading is lost due to increased individual velocity; Formula: 

( ) 1[1 ]f rp eω π π− −= + , (1 )* ( )* .i avg iπ µ υ µ υ υ= − +
    represents the velocity of individuals. avgυ



 is another vector quantity as the average velocity. 

μ is the result of an increase in the velocity of the individual (
iυ
  ), resulting in a loss of group heading ( avgυ



), rπ  = role individual, 
fπ  = focal individual, and ω = selection intensity.

 

Figure 2.1: Estimation of the systemic risk based on external (mutation in network) characteristics, bias=scalar for mutation 
rate.
Note: To express this more quantitatively, the model attempts to apply network characteristics based on the mutation 
rate (Reference to Figure 2.1 [left is the prototype with network characteristics, middle mutation 0.1, right 0.9]). Formula: 

( ) 1[1 ] , ((1 )* ( )* ). | |f r
i avg s ip eω π π π µ υ µ υ υ υ− −= + = − +
  

 represents the velocity of individual. avgυ


 is another vector quantity as 

average velocity. μ is the trade-off as the individual’s velocity increases ( iυ


) sυ


 resulting in a loss of group heading ( avgυ


 ), 

is a vector with a network density, rπ  = role individual, fπ  = focal individual, and ω = selection intensity.

In the simulation, the plots show that a displacement separates 
the individuals into relative position controlled by the initial 
setting. Although the pattern of the group behavior depends on a 
localized view of the initial conditions, a slight change in individual 
kinetic characteristics based on individual-group trade-off means 
that the displacement significantly diverges (or converges); group 
heading is lost due to individual speed increase. (See Figure: blue 
dots represent their position in a x, y coordinate plane, and the red 
arrows denote their range with its density [the tone of color]). 

The Figure 2.1 show the social influence of network density 
multiplied by the mutation rate (left is the prototype with network 
characteristics, right shows high mutation). To put it more quanti-
tatively, this diagram indicates that the behavior of modeled indi-
vidual is more dynamic in social ties. (See Figure 2.2; the left plot 
shows patterns according to density (black and white) of social ties, 
while the right plot shows the distribution in three-dimensional 
space. Defaults = IGT =0.5, mutation = 0.5: left = social ties 0.4, mid-
dle = social ties 0.5, right = social ties 0.6).
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Figure 2.2: Fundamentals of external (social ties) characteristics: bias = scalar for social ties. Note: With the network density 
including social ties, the individual components seemed to indicate that the portrait is even more dynamic underlying the 
individual’s social ties (left = social ties 0.1, middle = social ties 0.5, right = social ties 0.9) in 3



 . 

Finally, assessment of the strategy and evolution were mea-
sured based on their possible scenarios on how to mitigate be-
havioral problems. The prototype in the Figure 3 (plot of the left) 
shows an extreme case in the spectrum that applies a possible rela-
tion between difficult kinetic indexes divided by dynamic network 
characteristics. We observed the importance of interconnected 

interaction, as they are the main reason for re-unions of separate 
individuals. The group portraits appeared to change their pattern 
(See Figure 3 [middle-left and middle-right]) nonlinearly. Interest-
ingly, the point at which the sudden changes occur is the point at 
which social ties both increase and the individuals become highly 
sensitive to small changes in the network’s social ties (Figure 3).  

 

Figure 3: Possible scenario regarding behavior patterns. Meaningful results were achieved when the social relations were iden-
tical to the mediating factor regarding the possible risk of the system. See Figure 3 right-hand side and left-hand side plots; in 

R3 denotes average displacement of the individual’s position. Formula: 
( ) 1 | |[1 ] , ((1 )* ( )* ). .

| |
f r id

i avg i
ss

p eω υπ µ υ µ υ υ
υ

∏ −∏ −= + = − +
  

 repre-

sents the velocity of an individual. avgυ


 is another vector quantity as the average velocity. μ is the trade-off as the individual’s 

velocity increases ( iv


) resulting in a loss of group heading ( )avgv


 . | |idv


 is another scalar as a function of the ratio between 

the two objects. | |ssv   is a length as a function of the network density, rπ  = role individual,  fπ  = focal individual, and ω = se-
lection intensity.

The simulation results show that changes occur at specific 
points as the social tie increase (See the middle right and left plots: 
blue dot = individuals, red line = links, background = density with 
symmetrical characteristics). Based on the defaults which the 
model set as an initial value (See Figure 3 left; St = 0.2, mutation = 
0.5, IGT = 0.1, ID = 0.8), at the critical point (considered at st 0.55= 
middle left, 0.56 = middle right, 0.6= right, in this simulation), the 
system becomes highly sensitive to tiny changes in the network’s 
social tie. When relativity was applied, meaningful results were 

achieved, and the risk value of the social relations could be used as 
a mitigation factor against the possible heterogeneity of the system. 
With respect to heuristics through imitation-based social learning, 
the results suggest that individuals learn how to keep velocity 

( )2 2/d dtα = constant, α = acceleration] as a key factor for the 
homogeneity. Note that individuals are typically unaware that they 
are using this sort of heuristic, even though this accounts accurately 
for their behavior. Indeed, maintenance of a constant velocity 
between pursuer (focal model) and target (role model) has been 
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found in a variety of animals besides humans, including bats, birds, 
fish, and insects. This was based on the available equivalent velocity 
(zero acceleration implied), but if the individual fails to keep to 
maintain the traits for the nearby individual, the displacement 
decays exponentially with uncertainty. 

Discussion
This simulation shows how simple individual rules can lead 

to consistent group behavior, and how slight changes in those 
mechanisms can have a dramatic impact on an individual’s pattern 
(jeopardizing the whole system). It also shows how observations 
can be made beyond insufficient levels of complexity including 
learning and adaptation. This description deals with state per 
time as a determinant in neighbor allocation, and the number of 
neighbors placed at the location is based on the speed of movement 
(cultural evolution) scheduled for a given moment. As the agents 
represent individuals that occurred bottom-up, the actual state 
of their behavior tends to be more informative (agent-based 
modelling). This realistic simulation may allow the effects of 
different strategies of agents’ behavior to be tested and monitored 
(assessment of strategy and heuristic).

First, agent interactions are heterogeneous in this abstract 
setting. As the topology of the interaction movement trait can lead 
to significant deviations from the predicted pattern of behavior, 
it may generate various effects that mimic the behavior of real 
individuals in the social dynamics [15]. The individuals’ interactions 
are sensible decisions based on which the overall performance of 
the artificially designed system can be estimated and judged. The 
trade-off reliability between an individual and a group is primarily 
a measure of time variability of decision thresholds experienced 
by individual’s capability (see the implementation of Figure 1). 
In other words, we naturally differ in size, preference, and even 
strategy. The benefits of this model are clear; better and more 
efficient infrastructure planning, including compliance and better 
throughput due to the ability of the model to capture and reproduce 
emergent phenomena. 

Second, there is a social network, that is, a structure and 
relationships between individuals that significantly impact their 
behavior. People transfer the control underlying their strategies 
to others; such irrational conformity often leads to cascading 
failures, such as dangerous overcrowding and slower escape or, 
more generally, physical damage (see the implementation in Figure 
2). What might be called institutions are often subject to cognitive 
bias or systemic risks, and those biases has been blamed to a very 
large degree for unforeseen catastrophes and unexpected losses. 
In this simulation, collective behavior is an emergent phenomenon 
that occurs from relatively complex individual-level behavior and 
interactions between individuals. Collective behavior seems ideally 
suited to providing valuable insights into the mechanisms, and 
preconditions for, behavioral patterns according to their network 
characteristics (mutation rate and density of social ties). This model 

may suggest practical ways of mitigating the harmful consequences 
of such events and provide an optimal escape strategy. More 
directly, institutions need to be able to quantify their behavioral 
patterns within a reliable framework to be able to keep risk under 
control. Given the characteristics, this bottom-up simulation seems 
promising in terms of detecting cascading events and estimating 
the likelihood of potential losses (see implementation in Figure 3). 
An added benefit of simulation, then, is that one can identify where 
losses come from and test mitigation procedures: simulation can 
provide a thorough understanding of the capability (movement in 
the network) of the system drivers [4]. It also makes the formulation 
of mitigation strategies easier and can enable measurement of how 
the performance of the organization varies in response to these 
changes.

Third,  let us suggest what might be evolvable heuristics for 
agents to assess their exposure to this systemic bias. Simple heuris-
tics have an advantage in that they enable decisions to be made fast 
and with little information, and thereby avoid overfitting. The sim-
ulations may show that the structures of different interconnections 
affect which heuristics perform better, a relationship referred to as 
ecological rationality. This model proposes that the “gaze heuristic” 
can be a candidate that it works. According to researchers [16, 17], 
baseball players can use simple heuristics if a ball is already high 
in the air and travelling directly in line with the player. The player 
keeps his gaze on the ball, stars running, and adjusts his speed to 
ensure that the angle of the ball above the horizon appears constant 
[18]. The prediction is not that a player runs to a pre-computed 
landing spot and waits for the ball, but that the player is modified so 
that the image of the ball rises at a constant speed. It is possible that 

individuals do not compute velocity ( )υ


at all even in this model 

but they have to reduce a maintained value of 2 2( ) /d dtυ


 in a sys-

tematic way. As υ


 increased, they would keep 2 2( ) /id dtυ


 at zero 
2 2[ ( ) /id dtυ


= constant] [19]. Using this model, we might be able 
to propose such heuristics as evolvable traits or pay-off functions, 
guiding the evolution of these heuristics through imitation-based 
social learning. Note that individuals are typically unaware of using 
this sort of heuristic, even though this accurately accounts for their 
behavior. Such a rule of thumb from this simulation may provide us 
with more explicit examples of adaptation because individuals can 
be studied in the environments in which they evolved [20].

Fourth, to achieve homogeneity, the simulation adds diversity 
by incorporating simple relationships in the form of herd instinct 
which resembles natural individual behavior. To bring the 
mechanisms closer to the emergence, we applied explanatory 
structures with different bias that could be achieved with more 
complex heterogeneity. The bias in any system is a small, generally 
inconspicuous event that triggers a massive cascade in the network. 
On one level, the explanation for the risk is relatively simple and very 
unenlightening. However, these exist to trigger a more substantial 
response with a cascade that spreads fast, far, and wide without 
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showing us much [13]. We investigate the systemic cascades by 
examining how the bias actually functions, creating mathematical 
logic which is extensively tested under evolutionary conditions (see 
mathematical description). One implication of this relatively simple 
model may go back to actual state evolution and the idea of a phase 
transition. Phase transitions are all very different from each other; 
for instance, the fact of ice melting to liquid water is embedded in 
that phenomenon as the idea of a critical point. The same goes for 
many sorts of things, such as dripping taps, animal populations, 
chemical reactions, and the behavior of markets. 

The rules of thumb in this simulation may have suggested 
that an individual’s computational efficiency can be enhanced 
by operating near the critical point, which would mean that it 
is an adaptive feature [21]. We used well-accepted parameters 
connected to the system to try to determine if it was possible to 
describe the cascade by manipulating individual behavior and the 
key critical points. The mechanisms allow us to observe distinct 
types of behavior depending on how the parameters are connected 
and the threshold for when risk will fire in response to the applied 
rules and processes. As others have proved, this model may offer 
plausible insights into evolving patterns of network behavior, the 
strength of which is that it can bring some fresh perspective to 
understanding what the individual learns. This may be where the 
power of models comes into its own.

Conclusion
Users can design and run an infinite number of scenarios 

to observe the dynamics of the space, test the effectiveness of 
various management decisions, and track actor satisfaction over 
time. As the players in this model are customers (and attractions) 
with a behavior of their own, this can be a natural and very 
straightforward way of describing the system along the same lines. 
The use of various strategies, reinforcement learning, and other 
artificial intelligence techniques to generate strategies for agents 
can help gain fundamental insights into system dynamics [22]. The 
pattern of behavior emerges from the interactions of the actors, and 
individuals may alter in response to match in its their surrounding 
environment. Predicting how the pattern would change under 
a new set of operating regulations cannot be based on intuition 
or classical modelling techniques. Under these mechanisms, the 
system can be seen to exhibit a variety of hitherto unobserved 
dynamical behavior, including network characteristics and the 
coexistence of multiple search strategies.
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