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ARTICLE INFO ABSTRACT

Hydrogels are water-swollen networks, which are cross-linked structures consisting 
of hydrophilic polymers. They are made three-dimensional by the creation of the cross-
links by joining them through covalent or ionic bonds. Hydrogels have been used in 
various areas including industry and medicine due to their excellent characteristics 
such as high swelling capacity, high content of water, compatibility with other biological 
molecules, controlled chemical and physical properties, high mechanical integrity and 
biodegradability. They have been the center of attention of researchers from the past 
50 years because of their promising applications in industries and other areas. They are 
used in different fields, in medicine, in the diagnosis of the diseases, in culturing of cells, 
in injuries as wound healers, in cosmetics, in skin diseases like pruritis, in environmental 
pollution reduction and other miscellaneous applications such as in diapers for babies 
and sanitary products. Extensive literature can be found on the subject of hydrogels. 
The present review discusses the history, description of hydrogels, basic properties, 
classification, different techniques or methods of hydrogel synthesis and the areas in 
which hydrogels find applications.
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Introduction
History

The word “hydrogel”, as stated by Lee, Kwon and Park, has been 
used since 1894 but that material was not a hydrogel but a colloidal 
gel (of inorganic salts) [1]. These gels are made of polymeric 
matrices but they do not dissolve instead they swell [2]. Anyhow, 
the first accurate hydrogel having a cross-linked network was 
reported by Wichterle and Lim in 1960 for the first time [3]. It was a 
polyhydroxy ethyl methacrylate hydrogel that was synthesized with 
the aim of its usage in permanent contacts. Hydrogels are the first 
to be synthesized for uses inside the patient. After that, the research 
on the topic of hydrogels and their biomedical applications started 
to rise [4]. Some influential and important work was performed on 
hydrogels in the 1980s by Lim and Sun [5]. 

They have been used in medicine from about fifty years ago. 
Their history goes way back although the discussion in literature 
involves more information about their use in medical and 
pharmaceutical areas. The history of hydrogels has been classified  

 
in three different generations. The first generation included cross-
linking techniques that involved chemical alterations. These 
modifications were applied to achieve high swelling and good 
mechanical characteristics [6]. The second generation contains 
materials that are sensitive to and respond to specific stimuli, 
for example, pH, concentration, and temperature. The second-
generation hydrogels were made to overcome the problems of 
mechanical strength. Finally, the third generation then focused 
on investigating and developing stereo complex materials and 
hydrogels that were cross-linked through physical interactions. 
This development led to the development of “smart hydrogels” 
that are polymeric matrices with a broad spectrum of tailorable 
attributes [7]. These gels maintain their stability in the fluctuating 
condition such as temperature [8]. 

What are Hydrogels?

A hydrogel can be described as a three dimensional network 
formed by hydrophilic polymers which can expand in water. These 
polymers can hold copious amounts of water without disrupting 
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the structure [9]. Some researchers define it as a swollen polymeric 
material retaining a significant volume of water in it without itself 
being dissolved in water [10]. Hydrogels are novel drug deliverers 
that can aid in the delivery of several kinds of drug molecules either 
therapeutic or diagnostic nature. They are also suitable carriers 
for immunological products such as vaccines and other biological 
products like plasmas and seras and valvular intestinal cells [11]. 
Hydrogels, owing to their high water load, show flexibility that is 
similar to natural tissue. They owe this property to the existence 
of different functional groups in them that are hydrophilic. These 
groups include:

a)	 -COOH, 

b)	 -NH2, 

c)	 -OH, 

d)	 -CONH,

e)	 -CONH2 and 

f)	 -SO3H [12]

A polyampholyte hydrogel consists of negative and positive 
ions are bound to the backbone [13]. The resistance of hydrogels 
to dissolution occurs due to the cross-linkage between the chains 
in the network [14]. This network can include both natural and 
synthetic materials. The synthetic hydrogels are gradually taking 
the place of the natural ones during the last two decades due to 
the better properties presented by the synthetic hydrogels for 
instance, high water absorption capacity and incredible strength. 
They show a well-defined morphology which can also be modified 
or altered to get desired traits such as strength, functionality and 
biodegradability [15]. Hydrogels can undergo transitions such as 
gel-sol transition or transitions in the volume phase as a result of 
different biochemical stimuli and physical or chemical stimuli [16]. 
Physical stimuli comprise electric fields, temperature, pressure, 
light intensity, the composition of the solvent and magnetic field. In 
contrast, the chemical and biochemical stimuli involve pH, chemical 
compositions, and various ions. In most cases, these transitions are 
reversible. A hydrogel’s response to stimuli is dependent on the 
charge density, nature of monomers, and cross-linkage [17]. The 
charged hydrogels swell when they are exposed to the electrical 
field and undergo shape changes [18].

Classification of Hydrogels
The main constituents of the hydrogels are biopolymers or 

polyelectrolytes [19]. Hydrogels can be divided into different types 
according to the source from which they have been and the ionic 
charges, appearance, configuration and type of cross-linkages. 
These are classified based on:

Source

Natural Origin: These hydrogels contain natural polymers, for 
instance, proteins (gelatin and collagen) and other polysaccharides 
(starch, agarose, and alginate) [20].

Synthetic Origin: These are constituted from synthetic 
polymers that are synthesized by chemical polymerization methods 
[21].

Nature of Hydrogel

Hydrogels can be of different types in nature [22]. 

Physical Gels: These transitions from liquid to gel in turn of 
environmental changes (pH, temperature or pressure) or mixing. 
Physical gels are also called as reversible gels.

Chemical Gels: These gels involve covalent bonding for 
mechanical integrity and resistance to degradation. These gels are 
also called as permanent gels.

Biochemical Gels: These involve biological agents such as 
amino acids or enzymes as participants of the gelation process.

Configuration

Hydrogels can be put into different classes depending on their 
morphology such as:

a)	 Amorphous (non-crystalline).

b)	 Semicrystalline.

c)	 Crystalline [23].

Physical Appearance

Hydrogels can be organized into various classes based on how 
they appear, these are as follows:

a)	 iMatrix 

b)	 Film

c)	 Microsphere 

This appearance usually depends on the polymerization 
method being used in the preparation process [24].

Type of Cross-Linking

The cross-link junctions in the hydrogels can have chemical or 
physical nature.

a)	 Chemical cross-linkage has a permanent junction. 

b)	 Physical cross-linkages have transient junctions [25].

Polymeric Composition

Classification into different types on the method of their 
preparation is as follows:
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Homopolymeric Hydrogels: Contain a polymeric network 
having a single monomer species [26]. These hydrogels can be used 
as scaffolds for the promotion of cell adhesion and the regeneration 
of spinal cord cells [27].

Copolymeric Hydrogels: Comprise of two or more species of 
different monomers with a minimum of one lipophobic component. 
These components are usually arranged in different configurations, 
such as random or block configuration along the polymer network 
chain. For example, cellulose and CMC were used in the manufacture 
of PVP based hydrogels [28]. 

Semi-Interpenetrating Polymeric Hydrogels: This network 
is formed by penetration of one linear chained polymer into 
another cross-linked network and they have no chemical bonds in 
between them [29].

Interpenetrating Polymeric Hydrogels (IPN): This class has 
two synthetic or natural independent and cross-linked polymeric 
components in a network configuration [30]. 

Electrical Charge

a)	 Nonionic - having no charge [31].

b)	 Ionic - having either a negative or positive charge.

c)	 Amphoteric electrolyte (ampholytic).

d)	 Zwitterionic [32].

Properties of Hydrogels
Hydrogels are finding many applications in domestic and 

industrial areas due to its properties.  Hydrogels have:

a)	 Both solid and liquid-like properties

b)	 High biocompatibility [33]

c)	 Maximum absorption capacity 

d)	 Preferred particle size and desired porosity.

e)	 Shrink on drying

f)	 Responsive to stimuli [34].

Swelling

Hydrogels are polymers with cross-linkages that become 
swollen in a liquid medium [35]. They can absorb from a minimum 
of 10 to 20% to 1000 folds of their dry weight present in water. 
When a dry hydrogel soaks up the water, the molecules infiltrating 
the hydrogel matrix moistens the polar hydrophilic groups in it. 
After the hydration of these oppositely charged groups, the network 
swells and exposure to the hydrophobic groups occurs [36].

Mechanical Properties

These properties of the hydrogels can vary relying on the 
purpose of use of the substance. A gel with high rigidity can be 

obtained by increasing the cross-linkages in it. In contrast this 
rigidity can be reduced by heating these materials. Such as gelatin 
shows an increase in the Young Modulus through cross-linking [37]. 
The Young Modulus is the result of the interaction between the gel 
matrix and solution, i.e., water. The hydrogel cross-linking density 
can be assessed by employing Flory’s theory and Young’s Modulus 
[38].  

Porosity and Permeation

The factors that affect the hydrogel matrix include the 
interconnections between the pores, the average size of the pore 
and the distribution of pore size. All these factors add up to form a 
significant parameter called tortuosity [39]. The influencing factors 
for the distribution of pore-size are as follows:

a)	 Chemical cross-link concentrations of the polymer 
strands. 

b)	 Physical entanglements present in the polymer strands. 

c)	 Net charge present on the polyelectrolyte hydrogel. 

The influencing factors of the porous structure of a hydrogel 
include:

a)	 Type of the surrounding solution.

b)	 Diffused ionic solutes in solution. 

c)	 Dissolved uncharged solutes.

The high porosity enable them to uptake large amounts of 
water and swell [40].  The porous microstructure of hydrogels can 
be determined by various methods [41]. 

Cross Linking

The hydrogels are characterized by networks of polymers 
formed by cross-links. The properties of the hydrogels are altered 
by the presence of the number of cross-links [42]. The cross-links 
are of various types and they vary according to the type such as 
if they are bound physically or chemically [43]. The tailorable 
characteristics of hydrogels come from the type of cross-linkage 
and that is how they can be optimized [44].

Methods of Preparation of Hydrogels
They consist of cross-linked water interacting network of 

polymer that gives it an elastic structure.  To produce a hydrogel 
such techniques are used that can form a cross-linked polymer 
[45]. A standard method to produce cross-linkage is the free-radical 
polymerization. Some ways to cross-link water-soluble linear 
polymers include:

a)	 Linking the polymer chains via a chemical reaction

b)	 Use of ionizing radiation for the generation of main-chain 
free radicals that can recombine as cross-link junctions

c)	 Physical interactions, i.e., electrostatics [24]
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As stated in the above classification, they are divided into three 
classes based on the technique used in their preparation. These are 
as follows: 

Homopolymers

Cross-linked homopolymers hydrogels are usually used for 
contact lens production and one way to prepare it is by selecting 
poly (2-hydroxyethyl methacrylate) as a monomer, cross-linking 
agent; polyethylene glycol dimethacrylate and UV-sensitive 
initiator; benzoin isobutyl ether. The cross-linked film is formed in 
de-ionized water and then treated with UV radiation (λ = 253.7 nm) 
for 20 minutes. The next step is the immersion in water for 24 hrs 
until fully saturated and non-toxic [46]. Another way to synthesize 
the poly HEMA hydrogel is the use of low molecular weight cross-
linking agent.  The use of this agent forms a soft hydrogel containing 
about 30-40 percent of water and high permeation ability of oxygen. 
This makes it suitable for contact lenses, soft tissue implants, and 
carriers for drug delivery [47]. Polyethelene glycol-based hydrogels 
that are responsive to external stimuli are suitable for efficient 
and controlled drugs, biomolecules, proteins, and growth factor 
release. A novel technique of PEG hydrogel formation, introduced 
by Lin and Anseth, is called as ‘Click’ chemistry. This method has 
the advantage of rapid, specific reaction and versatility in bio-
conjugation [48]. Polyvinyl Alcohol (PVA) hydrogels formation 
includes interchanging cycles of freezing and thawing. This 
method of PVA material preparation provides greater mechanical 
strength as compared to UV radiation.  Polyvinyl Pyrrolidone (PVP) 
hydrogels can be synthesized by radiation technique and used in 
wound healing [49].

Co-Polymeric Hydrogels

They comprise of two monomer types from which one is 
lipophobic (water-loving). Gong et al. produced the triblock 
poly(ethylene glycol)-poly(εcaprolactone)- poly(ethylene glycol) 
(PECE) co-polymeric biodegradable hydrogel for drug delivery 
[50]. The ring-opening copolymerization technique was implied 
for ε-caprolactone. For triblock synthesis, the initiator used was 
mPEG, the catalyst was stannous octoate and the coupling agent 
was hexamethylene diisocyanate. When applied in-situ, this co-
polymeric block forms a hydrogel. In another study, Kim and his 
co-workers synthesized copolymers of Methacrylic Acid (MAA) 
with PEG-PEGDA by using the technique of free-radical photo-
polymerization. They used tetra (ethylene glycol) dimethacrylate as 
the cross-linking agent and 1-hydroxycyclohexyl phenyl ketone as 
an initiator. A nitrogen atmosphere was maintained for 30-minutes, 
and the process was done under UV light. The hydrogel formed was 
loaded with insulin successfully [51].

Inter Penetrating Network (IPN) 

IPNs are formed by combining two polymers intimately when 
one polymer is synthesized in the presence of the other polymer. 

This is done by immersion of a pre-polymerized hydrogel in a 
solution of monomers and an initiator. The main advantages of IPNs 
are resilient mechanical properties, more efficient drug loading, 
and controllable physical properties [52]. An example of IPN is 
the modification of polyethyleneglycol diacrylate hydrogel with 
β-chitosan. This modification resulted in improved biocompatibility. 
This was done by using a 2 percent chitosan solution for mixing 
a 10 percent aqueous PEGDA solution. UV radiations were used 
for the formation of cross-links leading to the formation of IPN 
hydrogel. Kim et al. attempted to extend the applications of another 
classic biomaterial; Polyurethane (PU), by making its IPN with 
polyacrylamide (PAA) [53].  The result was an IPN hydrogel that 
could control water absorption. For this purpose, both PAA and 
PU were mixed and exposed to UV radiation. The cross-linking 
agents used for this process were methylenebisacrylamide and 
vinylpyrrolidone. These types of IPN-PU hydrogels find applications 
in DDS, artificial muscles, wound dressing material, and sensor 
systems [54].

Methods of Cross-linking
Cross-linked networks of natural biopolymers such as alginate, 

carboxymethylcellulose, and chitosan have been seen. Synthesis 
polymers such as polyvinyl pyrrolidone [55], polythene glycol [56] 
, polyacrylic acid [57], polyethylene oxide [58], polymethacrylate 
[59] and polylactic acid [60] have been cross-linked to form 
hydrogels. Several methods for the synthesis of hydrogels include 
physical crosslinking [25], chemical cross-linking [61], grafting 
polymerization [62], and radiation cross-linking [63]. These 
modifications can enhance the viscoelasticity and other properties 
for applications in the pharmaceutical and biomedical field [64]. 

Physical Cross-linking

Physical or reversible gels have been a topic of interest because 
they do not need cross-linking agents for their production and they 
are relatively easy to produce. Various methods used for cross-
linking to produce physical gels include:

Heating or cooling a polymer solution: The hot solutions of 
carrageenan or gelatin are cooled to form cross-linked gels. The gels 
formation occurs because of the helix formation and association 
between the helices [65]. Hennink and Nostrum reviewed the 
polyethylene glycol-polylactic acid hydrogels formed by physical 
cross-linking by simply warming the solutions of polymers [25]. 

Ionic Interactions: This method includes the addition of 
divalent and trivalent counter ions to cross-link the polymers. 
Some examples of hydrogels formed by ionic interaction include 
chitosan-glycerol phosphate salt [66] and chitosan-polylysine [67]. 

Complex Coacervation: Literature has also shown another 
method that involves the sticking of oppositely charged polymers 
and forming complexes that depend on the pH and concentration 
of the solutions. Esteban et al. formed a polyionic hydrogel by 
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coacervating xanthan and chitosan [68]. Polyionic complexes form 
as the proteins are positively charged below their isoelectric points 
and tend to  associate with the negatively charged hydrocolloids 
[69].

Hydrogen Bonding: Hydrogels formed by hydrogen bonding 
involve reducing the pH of polymer solutions that have carboxyl 
groups. Takigami et al. reported the formation of CMC hydrogel by 
hydrogen bonding after dispersing CMC in a solution of HCL 0.1M 
[70].

Freeze Thawing: Freeze-thaw cycling is another way of 
physically cross-linking the polymers to obtain hydrogels. The 
principle of this technique is the microcrystal formation after 
freeze-thawing. Giannouli et al. performed cryogelation of the 
xanthan polymers to form hydrogel [71].

Chemical Cross-Linking

It can be done by various techniques that involve the grafting 
process or linkage of two polymer chains by a cross-linking agent. 

Chemical Cross-Linkers: Cross-linking agents such as 
glutaraldehyde [72] and epichlorohydrin [73] were employed 
to synthesize hydrogels containing both natural and synthetic 
polymers.  This technique includes the addition of new molecules 
for producing cross-linked chains in the polymeric chains. Literature 
also shows the use of 2- acrylamido-2-methylpropanesulfonic acid 
for cross-linking acrylic acid and κ-carrageenan for producing 
biodegradable hydrogels [74]. Carrageenan hydrogels also find 
applications in the industry for the immobilization of enzymes 
[75]. Epichlorohydrin can be used as a cross-linker for synthesizing 
hydrogels from cellulose by heating and freezing techniques [76].

Grafting: Grafting is done by the polymerization of a monomer 
on a preformed polymer backbone. Grafting can be divided into 
two types: chemical grafting of radiation grafting. Chemical grafting 
involves the activation of polymer chains by chemical reagents for 
example the use of N-vinyl-2-pyrrolidone to graft starch with acrylic 
acid [77]. Said et al. prepared CMC hydrogel by using electron beam 
radiation [62]. 

Radiation Cross-linking

Another technique for the preparation of these systems is by 
cross-linking the polymers. This method involves the use of free 
radical production in the polymer followed by its exposure to 
a high energy source. It is a useful method as it does not require 
any chemical additives. It is also a cost-effective process for the 
modification of biopolymers to be used for biomedical applications 
[78]. 

Characterization of Hydrogels
Morphology, elasticity, and the swelling property are various 

parameters on which the hydrogels can be characterized. The 
morphology indicates the structure of the hydrogel or its porosity. 

The swelling property indicated the mechanism by which the drug 
is released from the polymeric material, and the third parameter 
elasticity shows the strength and stability of the polymeric network 
and drug carriers respectively [79]. These three parameters are 
discussed in detail in the following paragraphs.

Morphological Characterization 

The morphology of hydrogels includes its shape, form, and 
structure and it is determined through a stereomicroscope. The 
texture of the polymers such as starch, can be assessed by the SEM 
technique [80]. 

X-Ray Diffraction

X‐ray diffraction is employed to evaluate the molecular 
organization and nanoscale structure of an organic hydrogel in its 
hydrated form. It may also be used to the  transition of polymers 
from their crystalline form to another during the processing [81].

In-Vitro Release Study for Drugs 

The release studies of drugs from the hydrogel carriers are 
essential to understand the mechanism of release. The duration 
taken by the hydrogel to release the drug is also of significant 
importance [82].

FTIR 

The IR absorption spectra of the hydrogels changes if there is 
any alteration in their morphology. These changes in the spectra 
can be determined by using FTIR. The appearance of bands shows 
the cross-linking of the polymers [83].

Swelling Behavior

The following equation can calculate the swelling percentage 
(S%) of the hydrogels:

S (%) = (Ws – Wd)/ Wd *100, 

Wd: Dry hydrogel 

Ws: Swollen hydrogel [84].

Rheology

The viscosity of the hydrogels can be evaluated by the Cone 
plate viscometer at a constant temperature, i.e., 4°C [85].

Measurement of Gel Content 

The gel content can be determined by putting the sample in 
200 mesh and washing it three times with distilled water following 
extraction at 80°C in distilled water for 24h. The remaining gel was 
dried. 

Gel content can be measured gravimetrically as follows: 

Gelation (%) = Wd/ Wo * 100, 

Wd: Weight after extraction 
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Wo: Initial weight [86].

Applications of Hydrogels
Hydrogel applications are widespread in various fields, due 

to their compatibility with different usage conditions and their 
specific structures. The flexibility of hydrogels makes them easy to 
be availed in various areas that range from biological to industrial 
areas. Due to their non- toxic nature and chemical compatibility 
with biological environments their use extends to medical sciences. 
Some primary uses of the hydrogels in industry and medicine are 
as follows:

Drug Delivery

The astounding characteristics of hydrogels make them a 
significant candidate for controlled drug delivery systems (systems 
that deliver the drug at a predetermined rate and time) [87]. This can 
help to overcome various problems that may occur while handling 
some formulations. The hydrogels are suitable for the loading and 
proper release of many drugs because of their high porosity (due 
to cross-linking and swelling) that, in turn, give them the property 
of high permeability [88]. The main advantage is that they can be 
used for sustained release of drugs with a high concentration to a 
specific area in the body [89]. Studies have also suggested the use 
of hydrogels for the long term delivery of drugs by gastro-retentive 
mechanisms [90]. To enhance the binding of a drug to the matrix 
of hydrogel (to extend the drug release time), both chemical and 
physical strategies can be used [91]. The drug can be released from 
hydrogels according to different local changes (stimuli) such as 
temperature, pH, physical stimuli, or some specific enzymes.

The examples of such hydrogels are as follows:

pH-Sensitive Hydrogels: pH is one of the most crucial 
parameters for DDS, as pH changes occur at many body sites such 
as the stomach or other specific tissues [92]. To form pH-sensitive 
hydrogels, both basic and acidic polymers are used, for example: 

Acidic Polymers: PAA, Sulfonamide containing polymers [93]

Basic: Ethyl methacrylate, Polyvinyl pyridine [94]  

Temperature-sensitive hydrogels in DDS: Temperature-
sensitive hydrogels are responsive to changes in the temperature of 
the body. These can be formed by using thermosensitive polymers, 
for example, Poly N-isopropylacrylamide and Poly N, N diethyl 
acrylamide [95]. Methylcellulose has also been seen to be triggered 
by thermal transitions [96].

Dyes and Heavy Metal Ions Removal

The waste-water of many industrial procedures can cause 
heavy metal pollution, which can be a severe threat to the health 
of the public and the eco-systems. Thus, the removal of these 
dangerous heavy metal ions is of great scientific interest. Hydrogels 
find applications in this regard as well. They act as adsorbents 

to remove heavy metals and toxic compounds. The functional 
groups such as carboxyl, phosphonic, sulfonic, and nitrogen on 
the surface of hydrogels can favor the absorption of the metal ions 
[97]. However, the use of hydrogels for heavy metal ion toxicity 
on large scales is not economical [98]. Studies have reported that 
hydrogels are excellent dye adsorbents. They can absorb materials 
with high amounts of methylene blue dye. Polyelectrolytes have 
been reported to be significant in heavy metal ions removal as they 
can bind to the oppositely charged metal ions forming complexes 
[99]. Other examples of hydrogels that can be used for metal ion 
removals are starch, chitosan, cellulose derivative, and alginate. 
Other phenomena like chelation and sorption also aid hydrogels in 
removing metal ions [100].

Biosensors

A biosensor is a combination of chemical and physical sensors 
[101]. It is a device used to sense and report a biophysical property 
of any system. A biosensor has a biological recognition part known 
as a bio element which makes analyzing biological information 
possible. Biosensors find applications in the following areas: 

a)	 Point-of-care testing 

b)	 Environmental monitoring

c)	 Diagnostics [102]

Bio element has different structures similar to enzymes, living 
cells or tissues and antibodies but the critical aspect is its specificity 
[103]. The biological molecules can be coupled with sensors 
by various methods such as covalent bonding, entrapment into 
membranes or matrix and physical adsorption. Hydrogels have also 
been manipulated to be used in diagnostic purposes or tests such 
as ECG (used as medical electrodes). The hydrogels can be used 
in biosensors by coating them on the sensing device (such as an 
electrode) or by acting as a 3D matrix or supporting bio elements. 
Hydrogels can protect the sensor parts in a biosensor by preventing 
undesirable interactions with cells or biological molecules. 
Various studies have been performed that depict the potential of 
hydrogels for cell culture. These can be used in endothelial injury, 
cardiovascular diseases in which the blood vessels may be reformed 
to treat the disease, the formation of proteins that can accelerate 
the growth process and bone remodeling [104].

They can give an excellent environment to enzymes or other 
biomolecules for the preservation of their activity and functional 
structure. Hydrogels can also immobilize biosensing elements. 
Some examples for different biosensors in hydrogel matrices 
include glucose-responsive hydrogels, DNA, antibody-antigen based 
sensors and oligonucleotides [105]. Living sensors are another 
group of biosensors, in which hydrogels are combined with living 
microorganisms or cells forming living cell-polymer composites 
[106]. The 3D structures, biocompatibility, and the high water 
content make the hydrogels suitable for the entrapment for cells 
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or bacteria. An example of the living sensor is Arxula adeninivorans 
LS3 (a biological recognition element) used to determine the 
biodegradable pollutants in the wastewater [107].

Tissue Engineering

Tissue engineering refers to the combination of materials, cells, 
and engineering for the improvement or replacement of biological 
organs. This requires the searching and finding proper cell types 
and a suitable scaffold for culturing them in appropriate conditions. 
Tissue engineering offers the potential for regeneration of almost 
any tissue or organ in a human body [108]. Hydrogels are an 
excellent option for a scaffold material due to the similarity of their 
structures to many tissues. They provide the advantage of minimal 
invasion for delivery and easy processing in mild conditions [109]. 
The material and scaffold design selection depend upon several 
variables, such as physical properties, biological properties, and 
mass transfer properties depending on the environment in which 
it will be placed and the intended application [110]. For example, 
the type of scaffold and its structure varies for the production of 
artificial skin and that for artificial bone. Hydrogels for this purpose 
can belong to either synthetic or natural materials. It is easy to 
control the chemistry as well as the structure of synthetic hydrogels, 
which in turn can help in altering their properties. The natural 
polymers forming hydrogels have favorable in vivo interaction, for 
example, chitosan and alginate [111].

In tissue engineering applications, the hydrogels have three 
purposes, which are:

a)	 Agents for filling vacant spaces (act as bioadhesives, 
bulking agents, preventing adhesions)

b)	 Carriers for bioactive molecules

c)	 3D structures for supporting cells 

Hydrogel scaffolds based on polymers such as alginate, collagen, 
and chitosan are generally used as bulking agents [112]. Synthetic 
hydrogels such as polyethylene glycol act as anti-adhesive materials 
in conditions such as in the prevention of post-operative adhesions. 
When acting as vehicles for stabilizing and delivering the bioactive 
molecules to target tissues, the hydrogels allow the drug delivery 
to only the desired tissues minimizing toxicity to the other tissues. 
Some of the examples of their carrier hydrogels include ionically 
cross-linked alginate hydrogels and glutaraldehyde cross-linked 
collagen sponges [113]. PVA is another hydrophilic polymer that 
is finding applications in drug delivery [114]. Hydrogels can act 
as 3D networks for supporting cells and the formation of an ideal 
tissue because of being able to be highly hydrated. This makes 
the hydrogels suitable for the goal of tissue development [115]. 
Blanchard et al. used the keratin-based hydrogels for cell scaffolds 
in tissue engineering [116]. Chitosan-based hydrogels such as beta-
glucan have also been studied as candidates for 2D and 3D scaffolds 
[117].   

Injectable Hydrogel for Regeneration of the Spinal Cord 

SCI defined as a complex degenerative disorder that is caused 
by growth inhibition due to trauma to the tissues of the spinal cord 
[118]. The use of hydrogels can sometimes recover these injuries. 
The viscoelastic hydrogels are converted from a liquid to a gel after 
being injected into the site of injury. Small spaces or transected 
parts are formed in SCI, which are filled by hydrogels [119]. These 
hydrogels can be loaded with therapeutic agents before injecting 
them into the site of injury. However, the properties of these 
hydrogel scaffolds should resemble that of spinal cord tissues [120].

The requirements for the designing parameters include: 

a)	 Creating a scaffold for cellular infiltration

b)	 Maintenance of bioactivity

c)	 Provision of sustained delivery of loaded agents

d)	 Tunable and local delivery of therapeutic agents 

Design parameters include:

a)	 Designed scaffold’s mesh size,

b)	 Mechanical characteristics of the gel material

c)	 Biocompatibility of materials used for injured site

d)	 Conditions of mild solidification 

e)	 Suitable porosity

f)	 Rate of degradation  

g)	 Bioactivity 

Injectable hydrogels can either be natural or synthetic, having 
their pros and cons. Examples of some injectable hydrogels include 
glycidyl methacrylate and polyamidoamine macromers (after 
undergoing gelation process) [121]. Injectable hydrogels are 
patient-friendly as they are minimally invasive. They provide an easy 
mixing of cells or bioactive molecules with the polymer solutions 
which in turn can quickly form the 3D microenvironments in 
desired shapes [122]. Enzyme mediated injectable hydrogels such 
as hydrogels containing tyramine conjugated polymers are used in 
drug delivery systems and as scaffolds due to their high elasticity 
[123]. Studies have also been done for the role of hydrogels having 
antigen-antibody interactions in the formation of an injectable 3D 
network [124].

Contact Lenses

Synthetic hydrogels have bio-applications in ophthalmology, 
especially in contact lenses [125]. The concept of contact lenses 
was first described in 1508 by Leonardo da Vinci. Polyhydroxyethyl 
methacrylate lenses were developed in the late 1960s by Professor 
Otto Wichterle which then started the era of soft lenses [126]. An 
acceptable contact lens has a high oxygen permeability because 
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when a contact lens is placed on the cornea that two main problems 
that occur include the prevention of oxygen exchange and hypoxic 
stress (disturbance of natural physiological metabolism of the 
cornea) [127]. A proper choice of contact lens shape and material is 
necessary for minimizing these problems [128].

Hydrogels are the best solution for this problem because they 
can cover the following requirements: 

a)	 Superior mechanical characteristics

b)	 Oxygen permeability 

c)	 Surface wettability

d)	 Good optical properties

e)	 Hydrolysis stability 

f)	 Sterilizing 

g)	 No toxicity 

h)	 Biological tolerance towards living cells [129].

Typical hydrogels used for contact lenses include dihydroxy 
methacrylates, acrylamides, methacrylic acid and many other 
monomers [130]. Their right swelling and permeability properties 
make them suitable and efficient for use in lenses [131].

Colon Specific Drug Delivery 

Hydrogels also find applications in the colon-specific 
drug delivery. For this purpose, polysaccharides are used as 
polysaccharidase enzymes are present in high concentration in the 
colon. These hydrogels provide tissue specificity to the drugs in the 
colon [132]. The controlled delivery of Ibuprofen has been achieved 
by hydrogel of guargum with cross-linking agent glutaraldehyde 
[133]. Dextran based hydrogels are also found to be promising as 
carriers of therapeutic agents for colon-specific drug delivery [134].

Cosmetology

Hydrogels are also good candidates for cosmetic use as they 
impart emulsion stability and conditioning [135]. They are useful 
as carriers for cosmetic agents in delivery and protection purposes 
as they liquefy at body temperature [136]. They are also used for 
aesthetic purposes [137]. 

Topical Drug Delivery

Hydrogels are also good candidates for the topical delivery of 
various therapeutic agents [138].  Hydrogels have been made to 
deliver a synthetic corticosteroid Desonide which is used as an anti-
inflammatory. These hydrogels provide moisturizing properties 
and prevent scaling and dryness [139]. Antifungal formulations like 
cotrimazole have also been developed as hydrogel formulations 
[140]. Hydrogels containing extracts of medicinal plants have 
been synthesized for the treatment of topical dermatitis [141]. 

Polyacrylic polymers have been found to have promising results in 
topical drug delivery due to their bioadhesive properties [142].

Modified Dosage Forms

Biomacromolecules such as heparin can be manufactured 
as modified dosage forms [143]. Insulin can be delivered to the 
absorption site with hydrogels by entrapping in a polymer matrix. 
Cross linkers such as N, N’ methylene bisacrylamide have been 
found to provide maximum entrapment efficiency. Thus, these 
hydrogels prevent the unwanted degradation of drugs like insulin 
[144].

Wound Healing

Hydrogels have been developed to treat cartilage defects by 
using modified polysaccharide occurring in the cartilage [145]. 
The aldehyde and methacrylate groups functionalizing the 
polysaccharides  react with the proteins in the skin tissue  forming 
a network where chondrocytes are released [146]. Hydrogels 
containing honey in a matrix are also being  used in wound healing 
[147]. Cell adhesive hydrogels made of PVA and gelatin in addition 
to blood coagulants have been shown to ensure better effects [148].

Agricultural Uses

Hydrogels not only have biomedical applications but also have 
been used in the agriculture. They can be used to prevent soil 
erosion as they can hydrate the soil and improve infiltration in 
soil. Hydrogels are considered as ecofriendly as they can prevent 
the drying of plants during drought periods. Pesticides have been 
encapsulated by utilizing hydrogels to improve plant growth and 
avoid pests. It has also been claimed that hydrogels decrease the 
leaching of the fertilizers [149]. 

Food Industry

Hydrogels are being used in the food industry for various 
purposes as well. A group of hydrogels called as the bio-based 
hydrogels are used for packaging various food products. Foods 
such as vegetables or fruits that can become dry because of loss 
of water may be packed in bio- based hydrogel packing which will 
then prevent dehydration and keep them fresh. This biodegradable 
packaging also helps to prevent the food from contamination by 
various microbial organisms [150].  

Miscellaneous 

Hydrogels also find applications in various products related to 
hygiene especially in the diaper industry. Super absorbent hydrogels 
contain such polymers that can provide excellent retention 
properties that are utilized making the diapers for children. A 
super absorbent cross- linked polymer starch-g-polyacrylate has 
been used since 1978 for this purpose in Japan [151]. The diapers 
and other hygiene products made of SAP hydrogels provide the 
advantage of moisturized skin, no rashes and improved skin health. 
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These hydrogels based diapers also prevent contamination, germ 
colonization and reduce leakage. The weight of diapers could also 
be reduced by using these hydrogels other disposable products 
such as napkins, bed sheets for hospitals and sanitary towels [152]. 

Limitations of Hydrogels
In addition to all the merits related to hydrogels, there are some 

demerits or limitations as well. However, the number of advantages 
of the hydrogels as carriers for drugs relatively high as compared to 
the demerits. Most of these limitations can be overcome but some 
substantial challenges remain to exist with the hydrogels. The main 
drawback of the hydrogels is that they are expensive. The loading 
of drug in the hydrogels is a complex process and requires skilled 
labor and mechanical devices for manufacturing. They are very 
fragile, so they careful handling. The sterilization of the hydrogels is 
a complicated process. The concentration of the cross-linkers in the 
hydrogels is vital as a high concentration may lead to toxicity [153].

Conclusion
Hydrogels belong to a class of polymeric materials either 

natural or synthetic; having the ability to entrap large volume 
of water in their matrix due to their swelling properties and 
specific and flexible structures. They can be characterized and 
evaluated by various tests such as their morphology, appearance, 
viscosity (rheological properties), microscopic techniques for their 
crystalline structures, their release characteristics for the drugs 
entrapped in them, the way they accumulate water in them and 
swell various times their size, the content of gel or the gelation 
capacity. They have found a wide variety of applications because 
of their ability to modify the polymeric structures thus helping 
them to obtain the desired functionality. The areas of hydrogel 
applications are rapidly expanding day by day. Hydrogels can also 
be formulated and designed to respond to specific stimuli. These 
hydrogels are referred to as stimuli-responsive hydrogels. These 
stimuli-responsive hydrogels can be employed in biosensors such 
as for the detection of ulcers or other diseases. They are also being 
employed in tissue regeneration making them good candidates for 
the treatment of tissue injuries such as spinal cord injury. They 
have different applications that involve their use in the reduction 
of environmental waste, including the heavy metals that are usually 
present in waste-waters, also they are being used in a sanitary 
product like towels, napkins, and baby diapers. Among their 
properties, biodegradability and biocompatibility makes them an 
excellent candidate for biological and industrial applications; for 
example, they can act as materials for toxic pollutants removal.
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