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ARTICLE INFO ABSTRACT

The sodium plays an essential role in human homeostasis and it has been described 
that a 30-50% of hypertensive patients are sensible to changes in their blood pressure 
after dietary high sodium intake. The last 20 years have been very active in trying to 
answer how the immune cells participate in hypertension, where the implications of 
increased sodium salt intake on the activation of the immune system have not been fully 
clarified. Even when some described mechanisms for macrophages, dendritic cells and 
lymphocytes proportion great insight for this understanding, the information concerning 
the different sodium compartments for its storage arise a new challenge for this area. 
This mini review highlights recent studies in different experimental settings regarding 
the effect of sodium as an activator for the immune system in hypertension and the 
mechanisms involved. We comment also the last studies suggesting the role of sodium as 
a regulator of immune cells in kidney medulla and extrarenal compartments that possibly 
may be involved in hypertension.
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Introduction
The sodium is essential for life in humans, where its balance 

is determined mainly by kidney function and by it consume that 
depends on social culture and people behavior. The World Health 
Organization has recommended adjusting the dietary sodium 
salt intake, since different studies suggest that high salt (HS) diet 
is strongly associated with cardiovascular diseases and blood 
pressure (BP) rise. The relationship between salt intake and BP 
has been well-established based on clinical and pre-clinical studies 
[1]. For instance, the International Study of Sodium, Potassium, 
and Blood Pressure study – INTERSALT - demonstrated in 10,079 
patients that exist a direct association between sodium intake and 
BP increase [2]. More recently, interventional studies show that 
salt intake reduction decreases levels of BP in normotensive and 
hypertensive patients [3,4], while a meta-analysis demonstrated 
that salt intake reduction in 2.5g/day is associated with a 20% 
diminution in cardiovascular events [5]. The BP rise after HS  
intake has been classically related to the restricted renal capacity  

 
into excrete sodium, as consequence of the activation of the 
intrarenal renin-angiotensin aldosterone system and the reactive 
oxygen species formation [6-9]. In addition, HS intake may 
activate the sympathetic nervous system and to promote a direct 
vasoconstriction in blood vessels [10,11], supporting a neurogenic 
mechanism. 

However, and even when the activation of immune system has 
been associated to human arterial hypertension (AH) since 60s [12], 
the implications of increased sodium salt intake on the activation of 
the immune system have not been clarified. Here, we highlight the 
effects of sodium and how its distribution may participate on the 
immune system activation during AH.  

Immune Cells in Hypertension 

The hypothesis for a causal role of immune cells in AH was 
proposed in 2007 starting with the Guzik’s study [13]. In the last 
20 years, different experimental approaches have been performed 
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to evaluate how cells of the innate and adaptive immune systems 
participate in AH, where monocytes-macrophages [14], dendritic 
cells (DCs) [15,16], and lymphocytes [17-19] present experimental 
evidence that supports their participation in AH [20]. In relation 
to the mechanisms involved, it has been described that monocyte-
macrophages act by increasing damage to target tissues [21], 
while DCs may produce isolevuglandin (IsoLG)-adduct, forming 
neoantigens after the activation of Nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase [22,23], promoting the 
activation of T-lymphocytes and the secretion of pro-inflammatory 
cytokines that favor to the sodium reabsorption and cardiovascular/
renal damage [24]. Additionally, although other components of the 
innate immune system, such as neutrophils and the complement 
system, have been less involved (and studied), their potential role 
in the development of AH cannot be ruled out [25,26].

Sodium Effect on Immune Cells in Hypertension

Early studies demonstrated that hypertonic salt solutions 
are able to increase cytokine production from human and rabbit 
peripheral blood mononuclear cells (PBMCs) [27], supporting 
the idea that the microenvironment is relevant for the pro-
inflammatory phenotype in T lymphocytes and monocyte-
macrophages [28]. Likewise, it was shown that the count of blood 
monocytes positively correlates with salt intake in normotensive 
patients [29]. Recently, Ruggeri et al. [30] demonstrated that 
CD14+ monocytes isolated from human PBMCs present an increase 
in IsoLG-adducts, and a greater secretion of pro-inflammatory 
cytokines, when cells are exposed to a HS concentration (190mM 
of sodium chloride) [30]. Interestingly, this effect was prevented 
by inhibition of NADPH oxidase. In this study, the researchers 
observed that the transcriptome of monocytes exposed to a HS In 
Vitro, showed high expression of chemokine receptors and for pro-
inflammatory cytokines, particularly interleukin-1β [30]. Together 
with other results, the authors suggest that a HS concentration 
promotes the activation of human monocytes mediated by NADPH 
oxidase and by the formation of IsoLG-adducts. In the same line, 
the authors demonstrated previously that the excess of dietary salt 
alters the gut microbiome leading to hypertension [31]. They found 
an increased accumulation of IsoLGs in the colon of hypertensive 
patients [31]. 

These findings were replicated in a murine model, where HS 
feeding also increased the IsoLG-adducts in mesenteric myeloid 
antigen-presenting cells (APCs), compared with animals that 
received normal salt diet [31]. The hypothesis proposes that 
sodium can enter to APCs via epithelial sodium channel (ENaC) 
leading to intracellular formation of IsoLGs, in a process regulated 
by the Serum and Glucocorticoid Kinase-1 (SGK1) and by NADPH 
oxidase [23,32]. This mechanism is quite interesting because 
suggest a new role for ENaC inhibition in the therapy for AH [33]. 
In addition, concerning to the role of CD14+ in APCs, it has been 
proposed that CD14 may participate with female sex hormone 

signaling modulating the pro-inflammatory activity favoring the 
salt-sensitive AH [34]. T lymphocytes favor the development of 
AH through the secretion of pro-inflammatory cytokines. In Vitro 
studies have shown that the increment of sodium salt concentration 
favors the T lymphocytes differentiation to T-helper (Th)17 cells in a 
SGK1-dependent way [35,36]. In this same line, knockout mice for 
Sgk1 in CD4+ cells showed a prevention in AH and less vascular/
renal damage induced by angiotensin II and deoxycorticosterone-
salt [37]. Interestingly, it has been observed that the expression 
of SGK1 is higher in Th17 and Treg cells compared to other T 
lymphocytes [36], where the immunomodulatory capacity of Treg 
lymphocytes is inhibited by HS [38]. 

However, these evidence are not excluding the fact that sodium 
excess may activate other populations of Th lymphocytes [28], 
since the participation of CD4+ and CD8+ lymphocytes has been 
confirmed in different models of AH [20,39], indicating that SGK1 
pathway could be a common signaling pathway within immune 
cells in salt-sensitive HA. 

Sodium Distribution and Its Possible Effects on Immune 
Response

In the last 15 years, new studies have aimed the clinical 
impact of sodium distribution and storage in body compartments. 
One of the most discussed tissues is the skin; it has been 
demonstrated that sodium accumulation in skin interstitium is 
bounded to glycosaminoglycans [40]. This is quite interesting 
since monocytes-macrophages are proposed to be regulators of 
subcutaneous lymphatic system through the tonicity-responsive 
enhancer binding protein and the vascular endothelial growth 
factor-C [41]. Additionally, this mechanism is considered pivotal 
for monocytes-macrophages mobilization when skin present a HS 
content, representing a modulatory way for BP in patients. New 
experimental data is needed for this potential mechanism since 
high skin sodium content has been directly associated with cardiac 
hypertrophy in kidney disease [42]. The tunica intima is proposed 
also as a source of non-osmotic sodium storage and as a contributor 
to salt sensitivity [43]. These observations may proportionate new 
rationale for to explain the heterogeneity of patients in BP changes 
after HS intake, and how the tunica intima damage may alter the 
sodium balance in closely related diseases to AH, such as renal 
disease and diabetes mellitus. However, new studies are necessary 
to determine how the endothelial cells in situation of HS may 
modulate the immune cells.

Finally, the kidney medulla it is well-recognized for represent a 
microenvironment with high osmolarity and sodium accumulation. 
The role of renal medulla on immunity is still controversial due to 
it hyperosmolarity has been reported to polarize APCs towards 
anti-inflammatory macrophages after renal transplant [44], 
suggesting that hypertonicity in renal medulla may modulate the 
pro-inflammatory status during kidney rejection or in the AH. By 
contrast, a study by Berry et al. [45]. proposed that the hypersaline 
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microenvironment set up a bactericidal activity in the kidney, by 
showing a high production of chemoattractant proteins from 
tubular epithelial cells [45]. 

Conclusion
In general, the available evidence suggest that increased local 

sodium levels can enhance the inflammatory potential of APCs, 
activating T lymphocytes, promoting inflammation and AH. We 
need additional studies in order to describe the possible effects of 
sodium on innate immune cells, and whether the renal medulla, 
skin interstitium and the tunica intima microenvironment play a 
role in AH. However, and even when our knowledge is limited, the 
recommendation of sodium adjustment for patients in order to 
avoid cardiovascular diseases remains absolutely necessary.
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