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Introduction
Peripheral T-cell lymphoma not otherwise specified (PTCL/

NOS) represents the largest and the most heterogeneous group of 
peripheral T cell lymphomas with extremely variable pathological 
and molecular features. Until now, the molecular pathology of this 
tumor is poorly understood [1,2]. Nonetheless, gene expression 
profile (GEP) studies indicated consistent abnormalities in selected 
pathways [3-9]. More recently, next generation sequencing (NGS)  

 
studies revealed some of the molecular bases sustaining the 
transcriptional abnormalities. Particularly, the newly recognized 
category of follicular T-helper (TFH) related PTCLs, including 
angioimmunoblastic lymphoma (AITL), follicular T-cell lymphomas 
(FTCL), and some PTCLs/NOS with TFH phenotype showed a 
consistent genetic landscape, characterized by somatic mutations 
affecting RHOA, TET2, IDH2, and DNMT3A [10-12]. For the 
remaining PTCL/NOS cases, the genetic pattern appeared quite 
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heterogeneous, with a few recurrent mutations affecting the T-cell 
receptor signaling, the JAK/STAT pathway, and the epigenetic 
controlling machinery [13]. 

In the last decade, however, beside gene expression patterns 
and somatic mutations occurrence, NGS technology has also 
provided extensive information about different genetic events 
such as, chromosomal translocations, insertions, deletions, and, 
remarkably, abnormal mRNA splicing. Abnormal mRNA splicing may 
result from mutations of splice site sequences, mutations in splicing 
regulatory sequences, and mutations in genes that contribute to 
constitute the so-called splicing machinery or spliceosome [14]. It 
is now becoming apparent that somatic mutations of spliceosome 
genes can play a role in the pathogenesis of human cancers, in 
particular in the pathophysiology of hematologic malignancies 
(both myeloid and lymphoid) as well as in solid tumors [14-23]. 
The spliceosome is a large RNA-protein complex, composed of 
five small nuclear RNAs (snRNAs) associated with proteins to 
form particles termed small nuclear ribonucleoproteins (snRNPs). 
The Splicing Factor 3b Subunit 1 (SF3B1) protein functions at the 
catalytic core of the spliceosome [17-19]. Recently, whole exome 
sequencing (WES) studies uncovered frequent somatic mutations 
in splicing machinery components, especially SF3B1, in patients 
with myelodysplastic syndrome (MDS) and these mutations 
are particularly common (up to 80% of cases) in those cases 
associated with increased sideroblasts [14-18]. Similarly, in chronic 
lymphocytic leukemia (CLL), SF3B1 was found to be the second 
most frequently mutated gene [24-29]. SF3B1 mutations were also 
detected at lower frequency in a variety of solid tumors such as 
gastric, prostate, breast, and renal cancers as well as others [14,30].

It is still unclear, however, the functional role SF3B1 mutations 
in carcinogenesis, and it has not been well established whether 
deregulated SF3B1 activity is required for the maintenance of 
cancer [30]. It is currently believed that SF3B1 mutations might 
affect multiple cellar functions and pathways, including DNA-
damage response, heme biosynthesis, R-loop formation, and 
telomere maintenance [30], as well as Notch and NF-κB pathways 
[30]. This study aimed to investigate the possible presence of SF3B1 
gene abnormalities in PTCL/NOS.  

Materials and Methods
We collected formalin fixed paraffin embedded blocks (FFPE) 

from 41 individuals with PTCL/NOS. The cases were diagnosed as 
PTCL/NOS according to WHO classification criteria at Sant’Orsola 
Malpighi Hospital, Bologna, Italy [1,2]. Tumor cell percentage was 
higher than 70% in all examined cases based on morphological 
and immunophenotypical analyses. The sample size (N≥30) was 
calculated in order to have more than 95% of probability to detect 
a mutation recurrent in 10% of cases. Genomic DNA was extracted 
from all samples using QIAamp DNA mini extraction kit according 

to the manufacturer’s protocol (QIAGEN, Italy). Following, 
polymerase Chain Reaction (PCR) was performed to amplify the 
exons no. 14, to 16 of SF3B1 gene which are reported as mutational 
hotspots [14]. Primers and relative conditions for amplifying were 
described by Rossi et al. [27]. The PCR products were purified using 
MinElute PCR Purification Kit (QIAGEN) and were sequenced with 
the original PCR primers using the BigDye Terminator v1.1 Cycle 
Sequencing Kit and a Genetic Analyzer (Applied Biosystems). 

Results and Discussion
All sequences were then manually examined and revealed no 

mutation in the studied exons of SF3B1. To extend our experience 
and to make our data more robust we additionally studied NGS data 
obtained by WES of 10 cryo-preserved PTCL/NOS cases, matched 
with non-neoplastic DNA as well as RNA-sequencing of 23 PTCL/
NOS cases (manuscript in preparation). All these data had been 
obtained by Illumina technology (for both library preparation and 
sequencing) (Illumina, CA). Interestingly, RNA-sequencing revealed 
a high frequency of splicing variant, not encountered in normal 
lymphocytes. However, again, consistent with Sanger sequencing 
results, bioinformatic analysis of NGS data [31,32] revealed no 
abnormality in any exons of SF3B1. As it has been mentioned, in 
this study we focused on SF3B1 gene since it had been shown to 
play a central role in the pathogenesis of hematologic tumors, 
and in a variety of solid tumors. However, various reasons could 
be accounted for generation of abnormal mRNA splicing, such 
as mutations in genes of splicing machinery, mutations of splice 
site sequences, and mutations in splicing regulatory sequences. 
Mutations affecting MET and NOTCH1 were reported to be 
associated with slicing defects [33]. Furthermore, different studies 
showed that single-nucleotide variations in splicing regulatory cis-
elements lead to intron retentions, particularly in tumor suppressor 
genes, including ARID1A, PTEN, and TP53 [33] as well as to exon 
splicing alterations in proto-oncogenes, such as PDGFRA and EGFR 
[33,34].

Besides gene mutations, dysregulation of splicing factors 
through expression and/or activity alteration has commonly been 
observed and significantly contributes to aberrant splicing in cancer 
[33]. The mechanisms, nonetheless, are still poorly defined. As 
recently summarized by Wang and Colleagues [33], it was reported 
that several oncogenic signaling pathways (including EGFR, PI3K-
AKT, MAPK, Wnt and signals from tumor microenvironment) 
might modulate the activity of the splicing machinery through 
different mechanisms, like transcriptional regulation, and/or post-
translational modification [33]. It is noteworthy that PDGFRA 
signaling, found to be aberrantly active in many PTCL types might 
be on the one side responsible for spicing machinery misfunction 
and, on the other side, aberrantly expressed itself due to aberrant 
splicing. Further studies are needed, however, to better elucidate the 
interplay between onco-signals and spicing factors in lymphomas 
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and cancers more generally. In conclusion, our study showed for the 
first time that SF3B1 is not genetically altered in PTCL/NOS. Future 
studies are warranted to better define the bases of the molecular 
pathogenesis of this orphan disease.
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