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ABSTRACT

Sipuleucel-T represents a novel immunotherapeutic compound designed to stimulate an immune response 
against metastatic castration-resistant prostate cancer (mCRPC). It is a personalized therapeutic vaccine 
in which individual patient-specific immune cells are used. It works by focusing on prostate cancer by 
triggering the patient’s own immune system. There are three doses total in a typical sipuleucel-T therapy 
regimen. The RCTs or randomized controlled trials, that provided FDA approval were done to evaluate 
the efficiency and safety of sipuleucel-T. An early double-blind trial (IMPACT) showed the life-prolonging 
effect of the treatment. There was an approximate 22% reduction in risk of death in Sipuleucel-T patients, 
compared with those in the placebo group and survival benefit of 4.1 months was noted with sipuleucel-T. 
Sipuleucel-T is now being used in the clinic for patients with a lower disease burden. Specifically, a 
few of the problems with advanced prostate cancer treatment, research and development, rational 
combinations of sipuleucel-T with other approved agents and how could they change/modify the issue 
of prostate cancer clinical care, are brought up. Current and future areas of investigation that are being 
explored in relation to sipuleucel-T are investigated.
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Background
Prostate cancer being the most prevalent non-cutaneous malig-

nancy, is second most common cause of worldwide mortality of men 
due to cancer [1], even though mortality rates have been trending 
downwards since the early 1990s [2]. The patient’s age, rate of dis-
ease growth and additional prognostic criteria will all play a role in 
determining the initial prostate cancer therapy. Surgery or radiation 
therapy can usually cure individuals with localized cancer when ac-
tive surveillance is not an option; however, up to 30% of patients 
will experience disease recurrence, which is normally detected by a 
progressive increase in serum prostate specific antigen [PSA] [3]. At 
the time of diagnosis, 15% or so of prostate cancer patients had met-
astatic illness. Androgen-deprivation therapy [ADT] is the backbone 

of treatment for these groups. Although the administration of ADT 
typically results in an early and good PSA response, there are severe 
side effects, therefore most men eventually develop castrate-resistant 
prostate cancer [CRPC] [2]. There is presently no cure for metastatic 
castrate-resistant prostate cancer [mCRPC] and the prognosis is gen-
erally poor [4]. Androgen receptor and androgen synthesis inhibitors, 
chemotherapy, radiopharmaceuticals, and immunotherapy are still 
some of the approved treatments [5].

The United States Food and Drug Administration [USFDA] ap-
proved Mitoxantrone as the first chemotherapeutic agent for individu-
als with castrate-resistant, metastatic illness; nevertheless, it was not 
discovered to increase overall survival [OS] in males [6-8]. Docetaxel, 
after proving to have a survival benefit, was given approval in 2004, 
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however it has considerable side effects [9]. The FDA authorized the 
use of cabazitaxel and abiraterone acetate as treatments following 
prior docetaxel therapy in 2010 and 2011 and in patients with bone 
metastasis, denosumab has been approved for the prevention of skel-
etal-related events [10]. More recently, radium-223 and enzalutamide 
both improved OS in patients with metastatic CRPC [10,11] and the 
latter was approved in 2012. The development of tumor-targeted an-
tibodies, immune checkpoint inhibition and cancer vaccines in recent 
years have had a significant impact on the treatment of solid tumors 
[4]. Sipuleucel-T is the only immunotherapy with a proven OS benefit 
for mCRPC among these newly developed innovative treatments [12]. 
The first therapeutic vaccination sipuleucel-T received FDA approval 
in April 2010 for the treatment of patients. 

Main Text
Sipuleucel T- A Cancer Vaccine

Sipuleucel-T [Provenge; Dendreon] is an autologous cellular 
immunotherapy used to treat individuals with metastatic castra-
tion-resistant prostate cancer [mCRPC] who are asymptomatic or just 
mildly symptomatic. It is an individually tailored therapeutic vaccine 
designed to elicit an immune response against prostate cancer cells 
[13]. Prostate cancer has shown some promise for cancer vaccines 
that train the immune system to detect tumor-associated antigens 
and activate a T cell response. Typically, vaccines contain a target pro-
tein or peptide that is known to be related with the cancer. Prostate 
cancer expresses tumor-associated antigens including PSA, PSMA and 
prostatic acid phosphatase [PAP], which is a desirable target for im-
munotherapy using vaccines [14]. It has recently been recognized that 
sipuleucel-T also elicits humoral immune responses against non-tar-
get [non-PAP] tumor antigens via antigen expansion in addition to 
stimulating an anti-tumor immune response against PAP, which is 
expressed in over 95% of prostate Adenocarcinoma [15]. The thera-
peutic effectiveness of sipuleucel-T in extending overall survival may 
be influenced by the expansion of the immune response [16,17]. Prior 
to prostatectomy, sipuleucel-T induces T-cell and B-cell trafficking to 
the tumor margin in men with locally advanced prostate cancer and 
it elicits long-lasting immune responses in men with mCRPC [5]. The 
antigen is presented by APC in a way that T cells can detect it. MHC 
class II and class I molecules, which can activate CD4+ T-helper cells 

and CD8+ T cytotoxic cells, respectively, are frequently expressed by 
these cells. When the T cell and the antigen match, the T cell is excited 
and begins to generate various cytokines and other chemical messen-
gers, such as interleukin-12, GM-CSF and tumor necrosis factor-alpha 
[TNF-α] [18].

Tumor Microenvironment

Many times, prostate cancer is portrayed as a “cold” tumor with 
an immunosuppressive microenvironment [19]. The tumor microen-
vironment, which is a hostile environment where a developing tumor 
deposit is shielded from immune rejection, is one of the numerous po-
tential obstacles to success. Overcoming these obstacles must become 
a requirement and be considered while developing cancer vaccines 
and choosing patients. The high interstitial pressure and hypoxia 
linked to big tumor masses are additional physical and immunolog-
ical variables that hinder the diffusion of molecules like antibodies 
and effector T cells into the tumor environment. Adaptive antitumor 
immunity is what vaccines are intended to promote in cancer patients 
[20]. By preventing T-effector cell function, tumor-infiltrating lym-
phocytes [TILs] may aid in the growth of prostate cancer. TILs with 
a leaning tendency toward T-regulatory and T helper 17 phenotypes, 
which decrease auto-reactive T cells and antitumor immune respons-
es, have been discovered in prostate cancer biopsy tissues [19]. Anti-
gen-presenting cells called dendritic cells [DCs] are crucial for activat-
ing CD8+ T lymphocytes, which then kill tumors [21]. ADT has been 
observed to briefly reduce T cell tolerance and increase T cell priming 
to prostatic antigens [22-24]. Withholding androgen increases thy-
mocyte proliferation and differentiation, which can reverse thymic in-
volution. It can also encourage T-cell infiltration in malignancies. The 
stroma of CRPC is highly reactive and is characterized by an enhanced 
T-cell infiltration that is predominately composed of populations of 
regulatory T cells that inhibit the immune system [25]. Numerous 
studies have demonstrated that the nature of the gut microbiota may 
influence immunotherapy responses and that antibiotics may reduce 
treatment response [26,27]. Removal of the tumor bulk, in situ tumor 
killing with tools like oncolytic viruses, production of immune-stim-
ulating cytokines and a range of pharmaceutical treatments can all 
help combat the deleterious effects of the tumor microenvironment 
[28]. Figure 1 illustrates the logistics of administration of sipuleucel-T.
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Figure 1: Logistics of administration of sipuleucel-T.

Mechanism of Action

Even though sipuleucel-T is frequently referred to as a “vaccine,” a 
conventional vaccination differs from combining of ex vivo and in vivo 
leukocyte activation. In the conventional, an antigen or an adjuvant/
antigen combination is directly administered to the patient. Here, ef-
fector cell development and physical antigen presentation occur only 
inside the host. Sipuleucel-T can also be called as an “autologous cel-
lular immunotherapy,” however this term does not consider the ex-
tensive ex vivo processing of the cells, that creates an environment 
distinct from the likely immunosuppressor cytokine and cellular 
milieu existing within a patient with continuous disease progression 
[29,30]. Although the sipuleucel-T’s exact mode of action is not yet 
fully understood, it principally requires the development of a T-cell 
response against PAP. The targeting and recognition of PAP-express-
ing prostate cancer cells by T lymphocytes may not be the only part 
of the system. T cells need to meet cognate antigen on an active APC 
in order to function [31]. The activated APCs enable in vivo priming 
of T cells following infusion and ex vivo priming of T cells during cul-
ture. After the first dose is given, there is a noticeable increase in APC 
and T-cell activation markers in the PBMCs of treated individuals, as 

well as a rise in the ex vivo generation of T-cell activation-related cy-
tokines. As a result, patients receive progressively activated APCs and 
T lymphocytes [32].

In most patients, sipuleucel-T prolonged survival but failed to 
clearly demonstrate measurable PAP-specific immunity. The attempt 
to link outcome to PAP immunity was hampered by the vaccine’s 
apparent benefit in patients without measurable immune respons-
es. Very little protein-based free PAP is injected into patients due to 
washing process. Peripheral blood may not accurately depict T-cell 
reactions at tumor deposition locations. It’s likely that most patients 
did not have significant numbers of PAP-specific T cells activated, 
meaning that the observed therapeutic benefit was not reliant on 
inducing PAP-specific immune responses. Prostate cancer patients 
frequently experience dominating discomfort and cachexia. Many cy-
tokines, including TNF-α, IL-1, IL-6, and IL-8, are increased in prostate 
cancer patients and may contribute to cachexia. Without significantly 
influencing size or growth of tumor, the infusion of activated APCs 
and T cells, which are sipuleucel-T components, may have significant-
ly disturbed the type and circulating cytokine level [33,34]. Figure 2 
demonstrates the mechanism of action of sipuleucel-T.
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Figure 2: Mechanism of action of sipuleucel-T.

Clinical Evidence

Clinical trials were performed on men with mCRPC to evaluate 
the efficiency and safety of sipuleucel-T. Utilizing measures of tumor 
response, slowed disease progression and decreased blood PSA lev-
els, these studies’ efficacy was evaluated. Whether serum PSA is a 
trustworthy predictor of clinical benefit and responsiveness in pros-
tate cancer is up for debate. However, a PSA reduction of at least 50% 
has been recognized as an efficient screening indicator for anticancer 
effectiveness [35]. Although survival is the most objective and import-
ant result, no published studies have been constructed to examine it 
as a primary endpoint to date [36].

Phase 1 and 2 Trials: Consecutive phase 1 and phase 2 studies 
assessed the PAP vaccine’s safety and its capacity to overcome im-
munological tolerance to PAP [37,38]. In the phase 1 experiment, 
increased doses of sipuleucel-T were administered to the patients. A 
total of their leukapheresis product, prepared as sipuleucel-T, was ad-
ministered to those on the phase 2 regimen. Time to progression[TTP] 
and immunological response to PAP were both associated [39].

a) In 1997, Burch and associates at the Mayo Clinic carried out 
the sipuleucel-T’s initial Phase 1 clinical trial. 13 patients with 
mCRPC participated in the study. They received three monthly 
subcutaneous injections of PA2024 alone at one of three dosage 
levels [0.3, 0.6, or 1.0 mg/injection] after receiving two infusions 
of sipuleucel-T spaced one month apart. All patients assessed for 
immunological response at the study’s conclusion had produced 
T cells that were specific to an antigen. Three patients experi-
enced a 50% or greater decrease in serum PSA levels. Analysis of 
the trial’s antibody response also indicated that additional injec-

tions of the soluble antigen PA2024, beyond the three infusions of 
activated dendritic cells, did not contribute to a rise in antibody 
titer [37]. At the University of California, San Francisco, sipuleu-
cel-T was the subject of another Phase 1 clinical investigation. 
Leukapheresis was performed on the study subjects at weeks 0, 
4, and 8 to remove CD54+ precursor cells that would later be in-
fused ex vivo with antigen and given intravenously. Patients who 
had stable or better conditions received a fourth dose in week 24. 
Six patients received the maximal dose of sipuleucel-T, which was 
administered to 12 individuals in a dose-escalation way at 0.2 × 
109, 0.6 × 109, 1.2 × 109 or 2.0 × 109 nucleated cells/m2. Prior to 
enrolling in the trial, nearly all the patients have had chemothera-
py and second-line hormonal therapy. Peak T cell proliferation re-
sponses to the PA2024 were reached after two or three infusions 
of sipuleucel-T and all patients displayed immunological response 
to it. It typically took 12 weeks for the condition to progress.

b) Following that, Small et al. extended their Phase 1 clinical 
trial into Phase II, enrolling 19 more CRPC patients [38]. The max-
imum manufacturing dose of sipuleucel-T was administered to 
each patient. Seven individuals had not progressed by the conclu-
sion of the expected 1-year follow-up period, which was observed 
to be the average progression time for the Phase 2 patients at 29 
weeks. The formation of T-cell proliferation responses following 
sipuleucel-T infusion were observed in all 31 patients when the 
data from both Phases 1 and 2 clinical trials were merged for 
analysis. 20 individuals experienced an immunological response 
to PAP following therapy, whether in the form of T-cell prolifer-
ation or antibody production and their average time to disease 
progression was much greater than that of the other patients [34 
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weeks versus 13 weeks]. Burch et al. started a Phase 2 trial of sip-
uleucel-T for castrate-resistant prostate cancer before their Phase 
1 findings showing the safety of sipuleucel-T and PA2024 were 
published [39]. At weeks 0 and 2, sipuleucel-T was injected in-
travenously into 21 qualified patients. At weeks 4, 8, and 12, they 
additionally got three 1.0 mg subcutaneous injections of PA2024. 
13 out of the 15 individuals who had their immune responses as-
sessed had antibodies that were specific for PA2024. It’s interest-
ing to note that two patients’ serum PSA levels dropped by 50% 
while they were receiving treatment. The average time to disease 
progression was 14.5 weeks. Another Phase 2 experiment con-
ducted at the University of California, San Francisco examined 
the PSA-modulating effects of sipuleucel-T. Patients who previ-
ously received radiation therapy or definitive surgery and then 
saw rising PSA levels between 0.4 and 6.0 ng/ml were included 
in the trial. Without further subcutaneous injections, sipuleucel-T 
was infused three times as scheduled. 13 patients showed aver-
age prolongation of PSA doubling time of 62% [4.9 months before 
treatment versus 7.9 months after treatment]. Only grade 1 toxic-
ity was found [40].

Phase 3 Trials: Sipuleucel-T FDA’s approval was based on three 
crucial phase 3 trials. Across numerous subgroups, the OS rates re-
mained constant. Sipuleucel-T was found to significantly extend 
survival in two early phase 3 randomized double-blind placebo-con-
trolled trials [trials D9901 and D9902A] in men with asymptomat-
ic mCRPC as compared with placebo. However, these smaller initial 
trials were combined for an initial FDA filing which led to initiate a 
larger randomized, double-blind, placebo-controlled phase clinical 
registration trial known as IMPACT study [Immunotherapy for Pros-
tate Adenocarcinoma Treatment] [D9902B]. 

D9901 study: A randomized Phase 3 clinical trial of sipuleu-
cel-T [D9901] [NCT00005947] was started in 1999 based on positive 
Phases 1 and 2 studies’ findings. In the first phase 3 clinical experi-
ment to be reported, conducted by Small and colleagues, immune re-
sponse data from men with androgen-independent prostate cancer 
were gathered in a double-blind, placebo-controlled clinical trial. Sip-
uleucel-T [n = 82] or a placebo [n = 45] were administered every two 
weeks to a total of 127 participants in a 2:1 ratio. Patients on placebo 
who were seen to be developing illness were transferred to sipuleu-
cel-T. All patients’ survival was monitored for 36 months. 115 patients 
were identified to have progressing illness at the time of data analysis. 
Compared to 10 weeks for the placebo, the median TTP for sipuleu-
cel-T was 11.7 weeks [P = 0.052]. The ninety five percent confidence 
interval [CI] for the hazard ratio [HR] ranged from 0.99 to 2.11. TTP 
was not significantly delayed for the sipuleucel-T group as a whole, 
although patients with a Gleason grade of 7 or fewer experienced 
a substantial change in TTP. The difference in average survival be-
tween sipuleucel-T [25.9 months] and placebo [21.4 months] was 4.5 

months, making a significant difference [P=0.01]. When compared to 
the placebo group, the sipuleucel-T patients’ T-cell proliferation was 
eight times higher [16.9 vs. 1.99; P = 0.001]. A remarkable threefold 
increase in overall survival fraction was observed at 36 months, with 
34% of sipuleucel-T patients still alive compared to 11% of placebo 
patients [41].

D9902A Study: Initially planned to be a companion trial to 
D9901, the D9902A trial [NCT01133704] had a similar research de-
sign and the same end goal of integrating data with D9901, specifical-
ly with relation to time to pain progression criteria. Three infusion of 
sipuleucel-T or a placebo were given to the men at random. The study 
was terminated after 98 patients were enrolled because sipuleucel-T 
did not show a statistically significant advantage over placebo in TTP 
in the prior study [D9901] [P = 0.033]. The study was underpowered 
to achieve its main goal of improved TTP; the estimated TTP was 10.9 
months in the sipuleucel-T arm and 9.9 months in the placebo arm 
[HR = 1.09, p = 0.719]. Patients receiving sipuleucel-T had a medi-
an OS of 19.0 months compared to 15.7 months in the placebo group 
[HR = 1.27; p = 0.331]. A subgroup of patients with a Gleason score 
of 7 or below, though, showed positive results. The initial phase of 
the investigation was given the code D9902A. In order to concentrate 
on patients with a Gleason score of seven or fewer, the trial protocol 
was modified and kept as D9902B. 225 individuals were randomly 
randomized to receive sipuleucel-T [n = 147] or a placebo [n = 78] in 
an integrated analysis of D9901 and D9902A. A significant 33% de-
crease in the risk of death was observed in the treated patients [P 
= 0.011], compared to a reduction of 15% in the placebo group and 
this resulted in a median OS benefit of 4.3 months [23.2 months vs. 
18.9 months; HR = 1.50; p = 0.011]. The probability of the disease 
progressing was also decreased by 21% as a result of the treatment [P 
= 0.111]. Prostate-specific antigen [PSA] levels were reduced by 25% 
or more in just seven out of 147 individuals receiving sipuleucel-T, 
compared to none of the 78 patients receiving placebo. According to 
the study, sipuleucel-T has a favorable risk-benefit ratio [16].

Impact Study: The largest prospective, third randomized [2:1], 
double-blind, global Phase 3 trial D9902B [Immunotherapy for Pros-
tate Adenocarcinoma Treatment; IMPACT, NCT0065442] was con-
ducted to establish sipuleucel- T advantages in long-term survival. 
512 men with metastatic, hormone-refractory prostate cancer partic-
ipated in placebo-controlled research. Initially, patients with a Glea-
son score of 7 or fewer were the ones who were targeted. Later, this 
standard was modified to take into account individuals with Gleason 
scores greater than 7. Three sipuleucel-T doses [n = 341] or a pla-
cebo [n = 171] were given to patients at intervals of two weeks. At 
36 months, sipuleucel-T showed a survival advantage of 4.1 months; 
median survival was 25.8 months with sipuleucel-T and 21.7 months 
with placebo. At the time of the cutoff, patients who took sipuleucel-T 
had significantly longer overall survival [P = 0.032; HR = 0.775]. In 
numerous patient groups, the outcomes were consistent. After 349 
patients died at an estimated follow-up of 36.5 months, an updated 
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analysis revealed that sipuleucel-therapeutic T’s effect was still pres-
ent and significant [HR = 0.751; P = 0.012]. Importantly, attaining 
titers of PAP or PA2024-specific antibodies was associated with en-
hanced survival; however, no difference in survival was found based 
on T cell proliferation to PAP or PA2024. These findings led to the US 
FDA’s approval of sipuleucel-T on April 29, 2010 [4].

Protect study: Beer and associates conducted the PROTECT 
[PROvenge Treatment and Early Cancer Treatment] randomized con-
trolled, double-blind, multicenter trial to ascertain the biological pro-
cesses of sipuleucel-T in CSPC [castration sensitive prostate cancer] 
[42]. Men with non-metastatic, androgen-dependent prostate cancer 
were included in the phase 3 research P-11 [PROTECT] [43]. Following 
radical prostatectomy, 176 patients with prostate cancer underwent 
androgen suppression therapy for 3–4 months before being randomly 
assigned in a 2:1 ratio to receive sipuleucel-T. Biochemical failure [BF], 
which was the main endpoint, was determined as a serum PSA level 
more than or equivalent to 3.0 ng/ml. The average time to BF was 
18 months in the sipuleucel-T group and 15.4 months for the placebo 
group, a difference which was not statistically significant [HR, 0.936; 
p = 0.737]. The PSA doubling time [PSADT] was also assessed and this 
difference between groups was statistically significant. After testos-
terone levels returned to normal, patients who got sipuleucel-T ex-
perienced a 48% increase in PSADT [155 versus 105 days; p = 0.038] 
[42]. There was no apparent change in quality of life seen between 
sipuleucel-T arm and the placebo arm, according to a second exam-
ination of the same patient cohort [44]. A follow-up study is currently 
being conducted to analyze the effectiveness and safety of PROTECT 
patients who will proceed to receive three more sipuleucel-T boost-
er infusions. Sipuleucel-T induced immune response, as assessed by 
antigen-specific T-cell responses, interferon-gamma enzyme linked 
immune spot [ELISPOT] assay and antigen-specific humoral immune 
responses, is the main result of this experiment [NCT01338012] [45].

Safety and Toxicity

Sipuleucel-T is generally very well tolerated. Following the onset 
of the disease and every 6 months or less after that, patients were 
monitored for treatment-related side effects and survival [4]. Four 
randomized phase 3 studies were used to check the safety of sipu-
leucel-T. Three of the studies [IMPACT, D9901 and D9902A] involved 
patients with metastatic CRPC, while the fourth involved patients 
with androgen-dependent prostate cancer. In total, 601 patients were 
treated with sipuleucel-T and 303 received a control treatment in the 
four studies [PROTECT] [46]. There was no proof that leukapheresis 
resulted in immune system suppression [43]. With a 22% decrease 
in death risk and a 4.1-month median survival benefit, the IMPACT 
trial’s findings showed an OS benefit. When applied to a patient pop-
ulation with survival rates of less than two years, this survival exten-
sion has clinical significance [4,16]. Numerous subgroups, including 
those based on age, race, ECOG performance status, number of bone 
metastases and prior chemotherapy use, all responded favorably to 

treatment [47]. Overall, no differences existed between patients re-
ceiving sipuleucel-T [23.8%] and those receiving a placebo [22.4%] in 
terms of the percentage of major adverse events [48].

The majority of reported adverse events [AEs] are infusion-re-
lated, self-limited and well managed with acetaminophen and di-
phenhydramine [49]. An integrated safety analysis of Phase 3 trials 
recognized the adverse events that were more frequently observed 
with sipuleucel-T [at a rate at least twice that of control], including 
chills [53.1%], pyrexia [31.3%], headache [18.1%], myalgia [11.8%], 
influenza-like sickness [9.7%] and excessive sweating [5.0%]. The 
majorities of reported adverse effects [AEs] were mild to moderate 
in intensity [Grade 1 or 2] and disappeared within 1 to 2 days. These 
incidents often happened within 1 day of infusion [4]. There was no 
evidence of a difference in the occurrence of non-neurologic arterial 
[1.0% vs. 0.7%; sipuleucel-T vs. control] or venous [2.8% vs. 4.0%] 
vascular events, in the incidence of cerebrovascular events, which 
was reported to be 3.5% for sipuleucel-T individuals and 2.6% for 
control subjects [50]. Chills, exhaustion, back discomfort, hyperten-
sion, hyperkalemia and muscular weakness were G3 events that were 
recorded for at least one patient at least one day following the sipu-
leucel-T infusion. 6.7% of sipuleucel-T individuals and 2.3% of control 
subjects suffered grade 3 adverse events within one day of infusion 
and one G4 incident was documented [intravenous catheter associat-
ed bacteremia] [51].

Combination Therapy

It is becoming more recognized that combination therapy is the 
best approach for treating cancer. In preclinical and early-phase set-
tings, logical combinations combining immunotherapeutic methods 
with a variety of therapy modalities are being investigated for pros-
tate cancer [52]. The combination therapy and a wide range of med-
icines that either function as immune stimulants/adjutants or block-
ers of immune regulatory cells in conjunction with cancer vaccines is 
possible and are currently used. All have been verified in preclinical 
and several have offered early clinical benefit data [53].

Conventional Combination Therapy: When two or more che-
motherapeutic drugs are combined with a target therapy each drug 
functions independently to produce additive antitumor effects. This 
has been demonstrated in various preclinical models that combine 
chemotherapy drugs and vaccinations. Immune responses to vaccina-
tions have not been negatively impacted when given along with spe-
cific chemotherapeutic agents, such as 5-fluorouracil and docetaxel, 
in patients, even though vaccines are less effective in those who have 
received extensive pretreatment with chemotherapy [54,55]. For in-
stance, it has even been demonstrated in preclinical investigations 
that the COX-2 inhibitor celecoxib did not negatively impact immune 
responses to vaccination and functioned effectively in combination 
with vaccination to increase anticancer effects [56]. Preclinical inves-
tigations have demonstrated that chemotherapy [docetaxel] increases 
the expression of the tumor antigen and the major histocompatibility 
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complex 1 [MHC-1] [26,57,58]. One more research has demonstrated 
that the chemotherapy drug Cytoxan [Cyclophosphamide] can im-
prove the effectiveness of vaccines. It diminishes the functionality and 
quantity of regulatory T cells [59-61].

Vaccine and Androgen Deprivation Therapy: Given that hor-
mone suppression may have immunostimulatory effects, it is logical 
to combine sipuleucel-T with it. Two studies are currently evaluating 
such combinations: one with leuprolide acetate [NCT01431391] and 
the other with abiraterone acetate [NCT01487863]. Androgen re-
striction therapy has been demonstrated to increase the overall sur-
vival of individuals with high-risk metastatic prostate cancer, despite 
some debate [62]. ADT is a physiological treatment that affects men’s 
androgen signaling in one of two ways. One strategy is to limit the 
release of FSH and LH at the pituitary level with a GNRH super-ago-
nist, such as leuprolide acetate. Using androgen receptor blockers like 
bicalutamide, nilutamide or flutamide is another technique to stop 
the androgen axis from working. The tissues’ androgen receptors are 
bound by these substances, making normal levels of androgen inac-
tive [63]. Androgen signaling is necessary for the majority of prostate 
epithelial cells to survive. Thus, ADT causes both normal and malig-
nant prostate tissues to rapidly undergo apoptosis, which encourages 
the influx of immune cells to the prostate [23,64,65].

The requirement of low-dose corticosteroids in the case of abi-
raterone acetate led to concerns about whether this would diminish 
any immunological response produced by sipuleucel-T. Recently, a 
randomized, open-label, Phase 2 study of sipuleucel-T given either 
before beginning abiraterone and prednisone [5 mg orally twice dai-
ly] or concurrently with them in men with mCRPC was published 
[NCT010487863]. According to CD54 expression, ex vivo APC ac-
tivation was the same regardless of when abiraterone plus predni-
sone was administered and it increased after the second and third 
infusions of sipuleucel-T in both arms, indicating an efficient immune 
prime-boost action. Additionally, the peripheral immune responses 
and sipuleucel-T product characteristic profiles in both arms were 
similar with previously reported Phase 3 results, indicating that sip-
uleucel-T’s immunological action was neither blunted or altered [66]. 
In conclusion, androgen restriction therapy reduces immunological 
response, boosts naive T cell thymic production, encourages T cell 
migration to the prostate and improves tolerance, all of which give a 
strong case for working with immunotherapy [22,23,67-70].

Vaccine and Cytokine Combination Therapy: Combining vac-
cine with cytokine therapy is one potential therapeutic strategy be-
cause of the comparatively low efficiency of vaccine monotherapy 
in prostate cancer to date. It is well documented that cytokines can 
improve immune response. Both IL-15 and IL-7 have the potential to 
be helpful in boosting memory T-cell responses in combination with 
vaccination [71] IL-7 is a homeostatic growth factor for T cells that 
can promote proliferation, maintain T cell responsiveness and pre-
vent and reverse T cell energy depletion [72]. Patients with asymp-

tomatic or minimally symptomatic mCRPC were randomized to re-
ceive CYT107, a recombinant glycosylated human interleukin-7, after 
receiving regular sipuleucel-T in a phase 2 randomized, controlled 
clinical trials [NCT01881867]. Compared to controls [no CYT107], 
patients got CYT107 therapy 3–7 days after finishing sipuleucel-T 
therapy. The accrual phase of this trial is complete and preliminary 
findings demonstrate that CYT107 can significantly increase T cell 
growth as compared to controls [73].

Vaccine and Check Point Inhibitors: Studies are being conduct-
ed to evaluate the interaction of sipuleucel-T with the PD-L1 inhibitor 
atezolizumab [NCT03024216] and the CTLA-4 inhibitor ipilimumab 
[NCT01804465] [74]. Under normal conditions, checkpoints protect 
the host from autoimmune disease and an overactive immune sys-
tem. In the case of cancer, antibody blocking therapy of these check-
points may aid in breaking tolerance, aid in improving the initial 
reaction when primed by a DC vaccination and aid in maintaining a 
high-quality long-lasting T-cell response. CTLA-4 was the first T-cell 
immunological checkpoint that was made a target for antibody block-
age. The inhibitory molecule CTLA-4 is being up regulated and de-
livered to the surface during the early phases of activation. The level 
of CTLA-4 expression at the cell surface increases with the strength 
of the T-cell receptor stimulation. To be able to compete with CD28’s 
co-stimulatory function, CTLA-4 has a higher affinity for binding 
CD80 and CD86 than CD28 [another inhibitory molecule] [75,76]. 
Sipuleucel-T and ipilimumab were combined in a preliminary phase 
1 research [NCT01832870] with nine participants and the results 
showed possible synergistic benefits, with elevated amounts of PAP 
and PA2024-specific antibody levels than would have been anticipat-
ed with sipuleucel-T alone [74]. In other studies, tumor vaccination 
and antibody blocking were combined and put up against either no 
treatment or both as a monotherapy. Blockade and vaccination to-
gether improved survival accelerated tumor remission and boosted 
IFN-gamma production [77].

Programmed Cell Death-1 [PD-1] is a different monoclonal an-
tibody that is currently undergoing clinical testing. A Phase 1 trial 
analyzed human anti-PD-1[MDX-1106] in patients with metastatic 
solid tumors [78]. This experiment showed a very low rate of adverse 
events, with only a few exceptional grade III toxicities. more effective 
and more tolerated than conventional cancer therapies [79-97]. 

Conclusion
A new oncology therapeutic paradigm is being introduced by sip-

uleucel-T, the first autologous cellular immunotherapy to receive ap-
proval and show an improvement in overall survival. Immunotherapy 
has been a standard of care with an influence on survival since the 
US FDA approved sipuleucel-T in April 2010 as a novel treatment for 
metastatic CRPC that is asymptomatic or very minimally symptomat-
ic. Many clinical trials were done and data from the phase 3 random-
ized IMPACT trial showed improved median overall survival by four 
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months. A fusion protein containing a prostate-specific tissue antigen 
linked to GM-CSF is utilized to activate autologous PBMC ex vivo to 
produce sipuleucel-T. In addition to promoting PAP uptake, process-
ing and presentation, the fusion protein PA2024 also supports cell 
survival. Treatment with sipuleucel-T is associated with easily man-
ageable side effects, which are usually mild. Numerous other clinical 
studies have shown it to be potentially helpful in the early phases of 
disease and pairing it with other treatments may increase its effec-
tiveness. Sipuleucel-T has laid the groundwork on which additional 
strategies can be implemented to facilitate the control of this dis-
ease. Moving forward, the central challenge for physicians will be to 
determine the optimal strategy for integrating sipuleucel-T into the 
management of men with advanced prostate cancer, both in terms of 
optimal sequencing and combination of sipuleucel-T with other avail-
able agents. We anticipate that the development of sipuleucel-T for 
the treatment of prostate cancer will pave the way for the successful 
application of other immune therapies that rely on more antigens as 
well as for the strategic coordination of immunologically unrelated 
therapies.
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