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Axial spondyloarthropathies lead to restricted mobility, resulting in difficulties 
in patients’ daily functioning. Due to the lack of a pathognomonic test, diagnosis is 
based on a combination of physical examination, laboratory test and imaging results. 
In therapy the question arises: which treatment line should be chosen? The aim of 
this article is to discuss the current state of knowledge regarding the role of genes 
in disease susceptibility. We also present potential genetic markers related to disease 
activity, the occurrence of extra-articular symptoms and treatment efficacy. The 
pathogenesis of the most common ankylosing spondylitis is not fully understood, and 
genetic predisposition is of great importance. To date, except HLA-B27, more than 100 
non-MHC loci have been discovered. The results of analyses of genetic polymorphisms 
are encouraging in predicting disease activity. Moreover, variants associated with the 
treatment efficacy of both classical disease-modifying drugs and biologics were also 
found. Discovering genetic factors will enable us to understand the pathogenesis. 
Genetic patient profiling can improve the diagnosis and identify persons at risk of 
severe disease. Single-nucleotide polymorphisms have the potential to be genetic 
markers of the effectiveness of therapy. This knowledge may be a key factor in the 
revolution in medicine – treatment personalization.

Abbreviations: AS: Ankylosing Spondylitis; axSpA : Axial Spondyloarthropathy; 
bDMARD: biological Disease-Modifying Antirheumatic Drug; CD: Crohn’s Disease; 
CNV : Copy Number Variant; CYP: Cytochrome P-450; ERAP: Endoplasmic Reticulum 
Aminopeptidase; HLA: Human Leukocyte Antigen; IBD: Inflammatory Bowel Disease 
(CD And UC); IL: Interleukin; LNPEP: Leucyl-Cysteinyl Aminopeptidase; MHC: Major 
Histocompatibility Complex; Nsaids: Nonsteroidal Anti-Inflammatory Drugs; OR: Odds 
Ratio; PS: Psoriasis; Psa: Psoriatic Arthritis; SNP: Single-Nucleotide Polymorphism; 
Spa: Spondyloarthropathy; TNFα: Tumor Necrosis Factor Alpha; TNFRSF: Tumour 
Necrosis Factor Receptor; UC: Ulcerative Colitis

Introduction
Spondyloarthropathies (SpAs) are a group of diseases that 

are characterized by arthritis in the spine and peripheral joints. 
Apart from ailments from the osteoarticular system, there are also 
nonarticular symptoms, including inflammation of the middle layer  

 
of the eye between the retina and the sclera (uveitis), psoriasis and 
inflammatory bowel diseases. The onset of the disease is difficult 
to observe. Due to the lack of a pathognomonic test, diagnosis 
is based on a combination of physical examination, laboratory 
test and imaging results. The pathogenesis of SpAs is not fully 
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understood, and genetic, environmental and immunological factors 
are assumed to play a role [1]. Despite numerous studies, we are 
not able to predict the course of the disease or the occurrence of 
extra-articular symptoms. The lack or loss of subsequent drug 
effectiveness observed in some patients is also a problem. Axial 
SpA (axSpA) usually starts before 45 years of age. Progressive 
disease leads to restricted mobility, resulting in difficulties in daily 
functioning of the patient or even disability. AxSpA is associated 
with a burden in terms of physical function, mood disturbance, work 
impact and quality of life impairment [2]. It was recognized that 
there is often a period where classic signs and symptoms of axial 
inflammatory disease are present in the absence of radiographic 
changes in the sacroiliac joints fulfilling the criteria for ankylosing 
spondylitis (AS); this period was subsequently given the name non-
radiographic axSpA [3].

The average delay between the onset of symptoms and the 
diagnosis of axSpA is estimated to be 5 to 7 years in the United 
States. Several factors may contribute to the delay in diagnosis, 
including the high prevalence of back pain (most commonly due 
to mechanical aetiologies) in the general population. The lack 
of specific physical examination findings in patients with early 
axSpA and the absence of extra-spinal manifestations have been 
reported to impair early diagnosis. The lack of biomarkers unique 
to axSpA, younger age at onset, and gradual disease onset may also 
contribute to delayed referral for evaluation by a rheumatologist 
[4]. The first-line drugs are nonsteroidal anti-inflammatory 
drugs (NSAIDs). In the case of long-lasting high-activity disease, 
continuous use of NSAIDs is recommended, and in the case of 
stable disease, NSAID use is recommended, if necessary, as when 
pain occurs (an on-demand strategy). In patients with peripheral 
arthritis, the inclusion of sulfasalazine may be considered. 
Glucocorticosteroids are acceptable but only for joint injections. 
In the second stage, biological disease-modifying antirheumatic 
drugs (bDMARDs) are used if standard treatment is not effective. 
An important role is played by rehabilitation, which prevents 
the stiffening of spinal column tissues and peripheral joints. 
Unfortunately, treatment is problematic in some patients. Many 
patients cannot take medications due to increased risks for adverse 
events. Approximately one-third of patients treated with anti-TNFs 
will have an inadequate response or lose responsiveness to these 
drugs over time, and in many patients, this may be the result of the 
development of antidrug antibodies [5].

 A key clinical question in AS is whether to start treatment with 
a TNF inhibitor (infliximab, etanercept, adalimumab, certolizumab, 
golimumab, and their biosimilars), an IL-17 inhibitor (secukinumab 
and ixekizumab), or a targeted synthetic DMARD (such as 
tofacitinib). Another question is when to discontinue therapy [6,7]. 
The purpose of this study was to describe the genetic basis of axSpA 

and to present potential genetic markers of severe disease, extra-
articular symptoms and response to treatment. We focused on the 
most common SpA – AS.

Pathogenesis
The pathogenesis of AS is not fully understood. The role of genetic 

factors, intestinal/skin barrier disorders, and infectious factors, 
which, with the participation of environmental factors (mechanical 
stress), lead to the development of inflammation, is emphasized. 
Among immunological disorders associated with pathogenesis, the 
most interesting are two pathways in the inflammatory responses, 
probably located at the end of the immune response hierarchy, the 
tumour necrosis factor alpha axis (TNFα) and the interleukin-23/
interleukin-17 axis (IL-23/IL-17). How the TNFα and IL-17 
pathways are connected and whether there is a hierarchical order 
between the two are not clear [8]. Further understanding of the 
cellular and molecular regulatory mechanisms of the IL-23/IL-17 
axis and other inflammatory cytokines may provide a promising 
strategy in SpA treatment [9].

The Role of Genetics in AS Pathogenesis

Accumulating evidence has suggested that AS is highly 
heritable. Human leukocyte antigen (HLA)-B27 is one genetic 
factor with a convincing association with AS, and HLA-B27 was 
reported to be present in 94,3% of patients. However, twin and 
family studies suggest that HLA-B27 can explain only less than 30% 
of the overall risk for AS, meaning that there are other genes related 
to the genetic disorder of AS. Several theories have been proposed 
explaining the role of HLA-B27 in the pathogenesis of axSpA. The 
three most prominent, not mutually exclusive theories are the 
“arthritogenic peptide hypothesis”, “the heavy chain homodimer 
hypothesis” and the “HLA-B27 misfolding hypothesis”. As a result 
of HLA-B27 molecule interactions with leukocytes or by inducing 
cellular stress, autoimmune processes are activated, including 
the IL-23/IL-17 pathway. Recently, scholars have also aimed to 
investigate other inflammatory biomarkers for AS, including 
interleukin IL-8, TNFα, C-reactive protein (hsCRP) and C-C motif 
chemokine 11 (CCL11), but studies that have focused on genetic 
biomarkers are limited [10,11]. Nevertheless, more than 100 non-
major histocompatibility complex (MHC) loci have been identified 
at genome-wide significance levels, either in studies of AS alone 
or in subset-based meta-analysis of related diseases. This level of 
significance is considered robust, and most of the loci have cross-
support between studies. The loci can be divided into the following 
categories: cytokines and cytokine receptors, mucosal immunity 
factors, M1-aminopeptidases, transcription factors and intergenic 
regions. Considering cytokines and cytokine factors, these loci can 
be divided largely into either IL-23 pathway or TNF pathway genes. 
There is a lack of large-scale pharmacogenomic studies in AS [12].
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HLA-B27 Genetic Diversity and Its Relationship to AS

HLA represent a group of highly polymorphic genes that 
reside in the major MHC which is located within the 6p21.3 region 
on the short arm of chromosome 6 and encodes many of the 
proteins of the immune system. These include HLA-class I genes 
that are codominantly expressed on the cell surface presenting 
intracellularly derived peptides to CD8 positive T cells. HLA-B27 
belongs to a family of closely related cell surface proteins encoded 
in the HLA-B locus. Many of the mutations are located within introns 
and thus are silent or occur in exons but do not cause amino acid 
changes. Therefore, at the translated protein level, there are over 
150 known subtypes of HLA-B27 based on one or more amino acid 
sequence differences [13]. Sometimes the differences may concern 
only 1 amino acid, e.g., HLA-B27:04 varies from HLA-B27:05 only 
at position 152 (Val to Glu) [14]. Different subtypes of HLA-B27 
are distributed unevenly worldwide and with different strengths 
of association with AS disease. The most frequent subtype is 
HLA-B27:05, which is found in all races and ethnicities. Data about 
the association of HLA-B27 subtypes with disease risk suggest that 
HLA-B27:05, HLA-B27:04 and HLA-B27:02 are strongly associated, 
but HLA-B27:06 and HLA-B27:09 are not (or weakly) associated, 
with AS. The relationship between HLA-B27 polymorphisms and the 
clinical characteristics of AS patients has also been demonstrated 
by some investigations, but the reports are conflicting [14]. On the 
other hand, it is worth highlighting that HLA-B27 has a protective 
role in HIV and HCV infections. The association among HLA-B27 
homozygosity, AS risk and its clinical characteristics has also 
been investigated. Homozygosity increases AS risk but does not 
affect clinical symptoms [14]. Recently, Wu et al. concluded that 
HLA-B27 heterozygotes (HLA-B27/B46) had more peripheral joint 
involvement among all HLA-B27(+) AS Chinese patients [15].

AS – A Hereditary Disease

It has long been known that AS runs strongly in families, with 
the risk of disease in first-degree relatives of AS patients being 
>52 times that of unrelated subjects. The recurrence risk for AS 
in monozygotic twins is 63%, in first-degree relatives is 8,2% and 
in second-degree relatives is 1,0%. The parent–child recurrence 
risk is 7,9%, and the sibling–sibling recurrence risk is 8,2%. HLA-
B27-positive first-degree relatives of AS patients are 5,6–16 times 
more likely to develop disease themselves than HLA-B27-positive 
carriers in the general community [16]. Even though HLA-B27 plays 
an undisputedly critical role in disease pathogenesis, estimates 
suggest that it accounts for only 20–25% of the total heritability 
and 40% of the genetic risk. Fewer than 5% of HLA-B27 carriers in 
the general population develop disease. Each of the non-HLA-B27 
gene SNPs individually confers a small amount of risk, with odds 
ratios ≤1,65 [17] (Table 1). All non-MHC loci contribute another 

~10% of AS heritability [18]. The question arises – What about the 
rest? To summarize, in AS, only up to 30% of the heritability has 
been elucidated. One reason for this shortfall is the requirement 
for large sample sizes (in the tens of thousands or higher) for the 
discovery of genes that have a small impact on overall susceptibility 
(associations with disease with an odds ratio of 1,1 or less). Other 
sources of genetic contribution are rare variants, the discovery 
of which will require extensive resequencing studies. Small 
gene copy number variants (CNVs) and insertions/deletions are 
extremely difficult to genotype using current high-throughput 
array technology (which is optimized for SNP genotyping) and thus 
remain a potential source of missing heritability. Epigenetic factors, 
such as differences in methylation patterns, might also have a role 
in conferring susceptibility, but the heritability of such influences 
is minor. 

Finally, epistasis (gene–gene interaction) is an area of recent 
investigation. Heritability estimates such as the one mentioned 
above are calculated from models of pathogenesis that allow 
for only additive effects, that is, in the absence of gene–gene 
interactions. Validation studies that use multi-marker, as opposed 
to single-marker, analyses in independent cohorts are reported to 
have an improved capacity for risk prediction; such studies are the 
focus of ongoing investigations as the statistical methodologies are 
being developed and refined [19]. (Table 1) Genes with the greatest 
contribution to AS heritability [20].

Table 1: Genes with the greatest contribution to AS heritability 
[20].

Gene AS heritability (%)

HLA-B27 23,3

ERAP1 0,34

IL23R 0,31

KIF21B 0,25

RUNX3, IL1R2 0,12

Non-MHC Genetic Polymorphisms Related to AS

The discovery of AS-related genes provides insight into disease 
pathogenesis and immune system function. The evidence confirms 
that aberrant peptide processing before MHC class I presentation 
and alterations of the IL-23 pathway are key elements in the 
pathogenesis of AS. It is worth noting that some loci associated 
with AS overlap with other immune-mediated diseases, such as 
inflammatory bowel disease, rheumatoid arthritis or psoriasis [21]. 
Some of them may appear as extra-articular symptoms of AS. Some 
of the most notable genetic findings from studies involving AS are 
the discoveries implicating the involvement of aminopeptidases 
– endoplasmic reticulum aminopeptidase 1 (ERAP1), ERAP2, and 
leucyl-cysteinyl aminopeptidase (LNPEP) – and genes in both 
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the TNF and IL-23 pathways. ERAP1 has the second strongest 
association with AS and displays a synergistic interaction with 
HLA-B27. This association is lost in HLA-B27-negative patients, 
but a weaker association with ERAP2 can be seen in both HLA-
B27-negative and HLA-B27-positive patients. ERAP1 and other 
aminopeptidases appear to play a significant role in trimming 
peptides transported from the cytosol to the endoplasmic reticulum 

to optimal length (8 or 9 amino acids) for loading on HLA class I 
molecules [22,23]. There are many papers about genes associated 
with AS susceptibility. Single-nucleotide polymorphisms (SNPs) of 
the most important genes and their combined odds ratios (ORs) are 
shown in (Table 2). Most important SNPs of non-MHC genes with 
the highest AS heritability.

Table 2: Most important SNPs of non-MHC genes with the highest AS heritability.

Gene SNP Allele OR Literature

ERAP1

rs30187 T 1,11-1,5 21; 24; 25; 26; 27; 28; 29 

rs27044 G 1,23-1,6 24; 26; 27; 28; 29

rs10050860 C 1,18-1,45 25

rs27037 A 1,23-1,36 27; 29

rs27434 A 1,19-1,33 27*; 29

rs10045403 A 1,18-1,20 25

rs17482078 T 0,52-0,73  24; 26; 27; 29

rs2287987 C 0,35-0,71 24; 26; 27; 29

rs10050860 T 0,39-0,72  24; 26; 27; 29

IL23R

rs11209026 G 1,61-1,65 25

rs1004819 A 1,19-1,3 26; 27; 29; 30; 31

rs10889677 A 1,3 26*; 27; 29; 30*; 31*

rs11209032 A 1,16-1,3 26*; 27; 29; 30; 31

rs1495965 C 1,1-1,2 26*; 27; 29; 30

rs2201841 G 1,15 26*; 27; 31

rs10489629 C 0,83-0,9 26*; 27; 29; 30

rs1343151 A 0,7-0,84 26; 27; 29; 30

rs11465804 G 0,67-0,69 26*; 27; 29; 30; 31

rs11209026 A 0,53-0,63 26*; 27; 29; 33; 30; 31

KIF21B rs2297909 G 1,25 32

RUNX3
rs11249215 A 1,15 32

rs6600247 C 1,12-1,16 21; 25

IL1R2 rs2310173 A 1,16-1,18 33

Note: OR (odds ratio) from the literature, only when it was statistically significant.

If present, the OR for all ethnicities was preferred. A single OR was enrolled when only one ethnic group had a statistically significant 
OR (e.g., European).

* - p statistically insignificant in this study

Evidence for a genetic relationship with disease activity 
seems to be limited. The association among AS disease activity, 
function, spinal mobility and IL-17 or IL-23 is not fully understood. 
The dysregulation of this pathway may lead to systemic chronic 
autoimmune inflammation, causing extra-articular involvement 
[24]. Moreover, İnal et al. suggested that the IL-17F polymorphism 
may be associated with susceptibility to AS, disease activity and 
functional status in Turkish patients [25]. Another study proposed 
IL-12B, IL-6R, RANKL, STAT4 and FCRL4 gene polymorphisms as 
promising biomarkers for diagnosis and prognosis in AS patients 

[26-40]. Other genes associated with disease activity are IL17RA 
and JMY and region 2p15 [41-43]. It is worth noting that many AS 
patients with high disease activity often do not show corresponding 
high CRP levels. An explanation for this might be a genetic 
contribution to variation in CRP levels. This observation may be 
important for the interpretation of disease activity scores such as 
the ASDAS, on which clinical decisions regarding drug selection 
are based [44]. Further research showed that the CRP rs3091244 
SNP was associated with an increased risk of AS. Moreover, it could 
serve as a biomarker for a good response to etanercept treatment 
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in AS [45]. More studies are needed in a larger group of patients to 
confirm these results. Another important topic related to axSpA is 
the occurrence of extra-articular manifestations. The most common 
is anterior uveitis, which affects 25% to 35% of patients.

Studies conducted mainly in China have shown an association of 
IL23R, FoxO1, IFNA1, IFNA13, and CFH gene polymorphisms with 
the occurrence of uveitis in patients with AS [46-49]. Other genes 
with a confirmed association with uveitis in AS patients are ERAP1 
and ERAP2. Research should be extended to include polymorphisms 
of other uveitis-related genes to include AS patients, e.g., IL-

10, MAP4K4/IL1R2, TNFSF15, CFI, CD59, and CFH [49-54]. The 
influence could be related to sex, the presence of HLA-B27 or AS 
status. SNPs of genes associated with peripheral arthritis and extra-
articular symptoms in AS are shown in Table 3. We added psoriatic 
arthritis to show possible similarity to another SpA. (Table 3) SNPs 
of genes associated with peripheral arthritis and extra-articular 
symptoms in AS. As we mentioned above, treatment is not effective 
in every patient. Is it possible to find the right drug for a specific 
patient to improve efficacy or reduce side effects? [55-60]. The 
answer to this question can be found in genetic SNPs, resulting in 
the formation of proteins with different activities. 

Table 3: SNPs of genes associated with peripheral arthritis and extra-articular symptoms in AS.

Extra-articular manifestation 
(statistically significant) Gene SNP Research group Literature

Peripheral arthritis 

IL23R rs11209008 AS 55

rs10489630

JAK2 rs7857730 AS 55

ERAP1 rs27044/rs30187 haplotype AS 56

Uveitis

IL23R rs17375018 AS uveitis 46

IFNA1 rs28383797 AS uveitis 42

IFNA13 rs653778 AS uveitis 42

FoxO1 rs2297626 AS uveitis / uveitis without AS 48

ERAP1

rs27044

rs30187

rs1057569

rs2287987

rs10050860

rs17482078

AS uveitis 57

rs30187

rs2032890

rs10045403

AS uveitis /AS without uveitis 58

rs27044/rs30187 haplotype AS 56

ERAP2 rs2248374 AS uveitis 55

Il-10 rs3021097 Uveitis in general 50

TNFSF15 rs3810936 Uveitis in general 52

CFI rs7356506 Uveitis in general 53

CFI rs13104777 Uveitis in general 54

CD59 rs831626 Uveitis in general / AS uveitis 49

CFH rs1065489 Uveitis in general / AS uveitis 49

MAP4K4/IL1R2  rs7608679 Uveitis without AS 51

Crohn’s disease IL23R

rs1004819

rs1343151

rs10889677

CD / AS 59

rs7517847 CD 60

rs11209026 CD 61

rs11209026 CD / PS 62
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IL2R1 rs12722489 CD 63

TNFSF15 rs6478109 CD / CU 64

ATG16L1 rs2241880 CD 61

SOCS1 rs4780355 CD / PS 62

ZMIZ1

rs1250544

rs1250559

rs1250560

CD / PS 62

TNF rs1799724 CD 65

Ileal, stenotic or fistulizing type of 
Crohn’s disease (not CD overall) CARD8 rs2043211 CD 66

Inflammatory bowel disease

IL23R rs10889677 CD / CU 67

rs11209026

IL-8 rs4073 IBD 67

IL-10 rs1800871 IBD 68

rs1800872

rs1800896

IL-18 rs1946518 IBD 68

ERAP1  
(only in the presence 

of HLA-C07)
rs30187 IBD 69

Ulcerative colitis

IL23R

rs1004819

rs1343151

rs1495965

rs7517847

rs2201841

rs10889677

rs11209026

rs11209032

rs11465804

CU 70

IL23R rs11209026 CU 71

IL23R rs76418789 CU 72

IL1R2 rs2310173 CU 71

IL1R2 rs10185424 CU 72

Psoriasis

IL23R rs2201841 CD / PS 75

IL23R rs9988642 PS 73

ERAP1 rs27432 PS 73

RUNX3 rs7536201 PS 73

SOCS1 rs4780355 CD / PS 62

ZMIZ1

rs1250544

rs1250560

rs1250559

CD / PS 62

ZMIZ1 rs1250546 PS 73

Psoriatic arthritis TNF rs361525 PsA 74

rs1800629

rs1799724

https://dx.doi.org/10.26717/BJSTR.2022.42.006680


Copyright@ Bartosz Bugaj | Biomed J Sci & Tech Res | BJSTR. MS.ID.006680.

Volume 42- Issue 1 DOI: 10.26717/BJSTR.2022.42.006680

33177

IL-12B 
rs3212227

rs6887695
PsA 74

IL23A rs2066808 PsA 74

IL23R rs11209026 PsA 74

ERAP1
rs26653

rs27044
PsA 75

RUNX3 rs7536201 PsA 75

RUNX3

rs1848186

PsA 76

rs4649038

rs4648890

rs10903122

rs11249215

Note: CD - Crohn’s disease

UC - Ulcerative colitis

PS - Psoriasis

PsA - Psoriatic arthritis

IBD - Inflammatory bowel disease (CD and UC)

Pharmacogenetics and pharmacogenomics have confirmed that 
genetic polymorphisms may have an impact on drug metabolism, 
drug targets, or drug receptors, resulting in interindividual 
variability in drug disposition and efficacy. Studies have 
demonstrated that variants in cytochrome P-450 (CYP) genes can 
result in differences in the expression and function of their relevant 
encoding enzymes, thus affecting the patient’s response to drugs. 
A Chinese study indicated the effect of CYP2D6*10 and CYP3A5*3 
polymorphisms on the efficacy of anti-TNF etanercept treatment 
for AS patients [61]. Anti-TNFα agents have been proven highly 
effective in a large number of patients, but the early identification of 
patients more prone to show an optimal and stable response in the 
long term remains an open issue. What about the TNFα gene itself? 
Scientists identified the TNFα rs1800629 and IL-6 rs1800795 
promoter polymorphisms as useful genetic biomarkers of response 
to TNFα blockers in a multicentre retrospective cohort of patients 
with SpA by considering, as the primary outcome, the long-term 
retention rate for treatment with the first TNFα blocker [62]. A 
better response to anti-TNFα treatment was also confirmed in the 
group of RA, PsA or AS patients [63]. 

Unfortunately, study results are not consistent. The contradictory 
data concern rs1800629; in China, no such relationship between 
rs1800629 and response to anti-TNFα treatment has been 
confirmed, in contrast to Europe [64]. Nevertheless, the results 
from a meta-analysis of papers from all around the world indicate 
that TNFα rs1800629, apart from rs361525, could predict the 
response to etanercept much more powerfully than the response 
to infliximab/adalimumab [65]. In the following year, a relationship 

regarding the effectiveness of anti-TNF treatment and rs1800629 
was also confirmed in Asia. The study group consisted of SpA 
and inflammatory bowel disease patients [66]. Moreover, in the 
Bulgarian population, TNFα rs1800629 was found to be associated 
with genetic susceptibility to AS, age at onset and disease severity 
[67]. AS severity dependence on the TNFα gene has been confirmed 
in Norway, as a reduced risk of uveitis and better spinal function 
[68].

The influence of tumour necrosis factor receptor 1A (TNFRSF1A) 
and TNFRSF1B gene polymorphisms also seems to be interesting 
for medicine. In a study lasting 12 months, an association with 
the long-term therapeutic efficacy of etanercept was confirmed 
for AS (rs1061622). Additional data indicated dependence on AS 
susceptibility (rs767455) and severity measured as chest expansion 
(rs1061622) [69]. In Europe, researchers evaluated various 
TNF inhibitors, such as infliximab, adalimumab, etanercept, and 
golimumab, and found a different polymorphism in the TNFRSF1A 
gene (rs1800693) that impacted the response to anti-TNF therapy 
for SpA [70]. Another genetic marker of etanercept therapy may be 
the ABCB1 gene [71]. Schiotis et al. searched for pharmacogenomic 
markers responsible for nonresponse to anti-TNFα agents in 
previously untreated AS patients. They found an association of 
nonresponse to anti-TNFα agents with the MIF gene rs755622, 
IL18RAP gene rs917997, TNFRSF1B gene rs1061622, ARFGAP2 
gene rs3740691 and IL-10 gene rs1800896 polymorphisms. The 
strongest predictor of nonresponse to anti-TNFα agents was the 
IL18RAP gene. Using a candidate SNP approach, they developed a 
genetic model of nonresponse. The validation of this genetic model 
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in prospective studies may lead to the design of a clinico-genetic 
algorithm to initiate biological treatment [72].

Table 4: Genes and their relationship with AS susceptibility, 
disease activity and treatment effectiveness.

AS Susceptibility Disease Activity Treatment 
Effectiveness

HLA-B27 ERAP1 CYP2D6*10, 
CYP3A5*3

ERAP1, ERAP2, LNPEP IL17F TNF

IL23R IL12B TNFRSF1A, TNFRSF1B

KIF21B IL33 ABCB1

RUNX3 IL6R  IL6

IL1R2  IL17RA IL10

IL-17F TNF IL33

IL-12B TNFRSF1B IL18RAP

IL-10 CRP CRP

IL6R P2X7R (males) NAT1/NAT2

TNF JMY COX2

TNFRSF1A  2p15 MIF

CRP RANKL ARFGAP2

CARD9 STAT4

FCGR2A FCRL4

TBX21

MMP3

PTGER4

P2X7R (females)

Note: [Based on 20, 21, 22, 23, 28, 29, 31, 36, 37, 38, 39, 40, 41, 42, 
43, 44, 45, 46, 47, 48, 56, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 
91, 92, 93, 94].

Recently growing body of evidence highlights the role of 
the IL-33 signaling pathway in inflammatory arthritis, such as 
AS. This cytokine functions as an alarmin, alerting the immune 
system and triggering the inflammatory process. In the Caucasian 
population, a significant association in the IL-33 rs16924159 
genotype distribution with regard to disease activity and anti-TNF 
therapy efficacy was found (89). The effect of classic DMARDs such 
as sulfasalazine or NSAIDs can also be predicted using genetic 
markers such as NAT1/NAT2 and COX2, respectively [73-75]. The 
development of biological drugs acting on various inflammatory 
cytokines raises the following question: what kind of therapy 
should be used in a particular patient? What is better: anti-TNF or 
anti-IL-23/IL-17 pathway drugs? Based on such genetic profiles, 
clinicians can recommend appropriate treatment to patients. 
Genetic research should be conducted in different populations. The 
association of gene polymorphisms with AS can be worldwide or 
can concern only one race. For example, ERAP1 rs27044 appeared 
to be significantly correlated with AS in both Asians and Caucasians. 
For ERAP1 rs30187, the findings of genotypic comparisons 

supported that the association existed only in Caucasians but not 
Asians [76-82]. Stratification by ethnicity identified a significant 
association between some SNPs of IL-23R and AS susceptibility in 
Europeans and Americans but not in Asians [83-94]. The authors 
of many studies emphasize the need for further research in other 
countries. (Table 4) shows the most important genes and their 
association with AS. (Table 4) Genes and their relationship with AS 
susceptibility, disease activity and treatment effectiveness.

Conclusion
AxSpA affects young and economically and socially active 

people. We are currently unable to predict the course of disease or 
the presence of extra-articular symptoms. Which patients are at risk 
of complications? Which patients are at risk of adverse reactions to 
treatment? Due to the risk of disability, it is advisable to include 
appropriate treatment quickly. Genetic markers could improve the 
diagnosis of this disease. Early identification of patients at risk of a 
severe course of the disease or extra-articular symptom occurrence 
would enable early intensification of the therapy. In addition, 
understanding the expression of genes involved in the pathogenesis 
of the disease will allow new types of drugs to be developed e.g. 
maybe the IL-33 blockers will be effective? Currently, new biological 
drugs are being developed. These drugs act on different factors 
within the inflammatory pathway. Which treatment line should be 
chosen first? In the case of ineffectiveness, which drug should be 
chosen as the second- and third-line therapies? Which patients will 
be non-responders? There are many questions concerning therapy. 
The real revolution in medicine is yet to come. Scientific studies of 
many genes, their haplotypes and mutual interactions may allow 
the creation of a genetic model that predicts disease activity, the 
risk of extra-articular symptom occurrence or treatment response 
status with increasing effectiveness and minimizing side effects. 

Such studies need to be carried out in different regions of the world 
to exclude racial differences. Patient genetic profile determination 
will allow new guidelines to be developed. Knowledge regarding 
the genetic markers of potential ineffectiveness of therapy and the 
risk of side effects may be key factors in the process of choosing the 
right medicine, thus personalizing treatment. Gene SNPs have the 
potential to be genetic markers of the effectiveness of therapy. This 
will result in better and faster treatment outcomes and will allow 
patients to remain physically active, improve patient quality of life 
or even extend patient lifespans The future is promising.
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