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Fusobacterium necrophorum is a Gram-negative, strictly anaerobic bacterium 
associated with necrotic infections in animals and humans. The bacterium is an 
opportunistic and primary pathogen that causes liver abscess, footrot, and laryngeal 
infections in cattle. Liver abscess in cattle is reported at 20.7% annually, leading to 
liver condemnation and economic burden to the feedlot industry. Antibiotics are the 
mainstay for treatment; however, the reports of antibiotic resistance and demand 
for antibiotic-free, natural and organic beef have demanded alternative therapies 
and preventatives. Hence, developing an effective vaccine is essential to control 
infections and economic loss to the cattle industry. Currently, there is no licensed 
vaccine to prevent liver abscesses in cattle. A number of virulence factors for F. 
necrophorum have been explored in the past for vaccine development. Each one has 
some advantages and disadvantages concerning immunogenicity and protective effect. 
The review summarizes vaccine candidates explored in the past, mainly focusing on 
F. necrophorum. The review also connects some concepts related to virulence factors 
found in F. necrophorum and how it could be a promising vaccine candidate based on 
the studies done in other Gram-negatives. 

Mini Review
Fusobacterium necrophorum, a Gram-negative anaerobic 

bacillus, is an opportunistic pathogen isolated from oral cavities, 
gastrointestinal and genitourinary tracts of humans and animals 
[1,2]. The bacterium is associated with Lemierre’s syndrome 
affecting young and healthy individuals and necrotic infections in 
hepatic, abdominal, and respiratory organs in animals [3,4]. The 
bacteria are primary causative agents of liver abscess, foot rot, and 
calf diphtheria, sometimes in mixed infections with other bacteria 
such as Trueperella pyogenes and Porphyromonas species [5,6]. F. 
necrophorum has been classified into four biotypes: A, B, AB, and C 
[7]. Biotypes A and B are of veterinary importance and associated  

 
with cattle liver abscesses. Biotype A, subspecies necrophorum, 
and Biotype B, subspecies funduliforme, vary in cell morphology, 
colony characteristics, virulence capacity, virulence factors, 16s 
rRNA sequences, and DNA gyrase B subunit [7,8]. The subspecies 
necrophorum is more virulent and frequently isolated than the 
subspecies funduliforme, and is the primary causative agent in liver 
abscesses [9]. Annually, the rate of incidence of liver abscess in 
feedlot cattle is 10-20% [10]. 

Generally, the incidence is higher in cattle fed with high grain-
based diets where the progression occurs from chronic acidosis 
and rumenitis to liver abscess [11]. The National Beef Quality 
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Report 2016 has reported a liver abscess rate of 20.7%, causing 
liver condemnation [12]. Thus, this infection and search for a 
cure have been of economic importance in the feedlot industry. 
So far, the antibiotics such as tylosin-phosphate and virginiamycin 
have been approved as antimicrobial feed additives to control 
liver abscesses [13]. More generally, with the potential threat of 
antimicrobial resistance [14], new approaches and preventive 
strategies are needed, including vaccination. There is no successful 
vaccine against F. necrophorum, which has pointed out the need to 
investigate different vaccine candidates. This mini-review provides 
an overview of different vaccine candidates investigated in the past 
and other virulence factors that could be explored as a promising 
target for a vaccine.

Lipopolysaccharide (LPS) and Hemagglutinin

F. necrophorum has several virulence factors, including 
leukotoxin, lipopolysaccharides (LPS), hemolysin, hemagglutinin, 
outer membrane adhesins, extracellular proteases, and other 
enzymes. [1,9,15-17]. Currently, the focus has been looking into 
proteins as vaccine candidates, mainly surface proteins (LPS), 
membrane proteins (OMPs and OMVs), and secreted proteins 
(hemolysins). 

F. necrophorum lipopolysaccharide and hemagglutinin plays 
a crucial role in disease pathogenesis. LPS can induce endothelial 
cell injury, toxic hepatitis and has anti-phagocytic property, 
thus indicating its role in eliciting an immune response [18,19]. 
Similarly, haemagglutinin of F. necrophorum has the ability to 
agglutinate chicken, human RBCs, and bovine platelets. Kanoe 
and Yamanaka reported that antisera specific for hemagglutinin 
reduced bacterial adherence and platelets aggregation, indicating 
the role of haemagglutinin in the bacterial attachment during the 
initial stages of abscess formation [20,21]. However, the protective 
functions of LPS and hemagglutinin have not been reported. 

Exotoxins: Hemolysin and Leukotoxin

Leukotoxins are critical virulence factors involved in the 
pathogenesis of anaerobic infection. In F. necrophorum, leukotoxin 
plays a significant role in the pathogenesis of bovine liver abscesses. 
Its production is directly proportional to the severity of abscesses 
in cattle [22]. Leukotoxin induces cellular activation and apoptosis 
of bovine leukocytes for inflammation modulation [15]. Studies 
have demonstrated that recombinant leukotoxoid challenge in a 
mouse model induced good immune protection [1]. 

Similarly, another virulence factor that has a role in the 
pathogenesis of F. necrophorum is hemolysin. Iron acquisition 
is required for bacterial colonization and is critical for invasive 
infections such as liver abscess. Studies show that the production 
of hemolysin helps in successful colonization of F. necrophorum 

during infection by iron acquisition mechanism- a key role in 
pathogenesis [23]. 

The fact about the co-existence of F. necrophorum with T. 
pyogenes in liver abscesses in cattle is well documented in the 
literature. This symbiotic relation is mediated through pathogenic 
synergy between these two pathogens where T. pyogenes creates 
an anaerobic environment for the initial establishment of F. 
necrophorum. In turn, F. necrophorum produces leukotoxin to 
protect T. pyogenes from phagocytosis [24]. A study was conducted 
to examine the combination of leukotoxoids of F. necrophorum and 
bacterin of T. pyogenes [25]. However, the vaccine was only effective 
in low prevalence settings because of the biases related to the pen 
effect and antibiotics effect on recurrent infections in the studied 
group. 

T. pyogenes is also found in mixed infections with other anaerobes 
such as Clostridium perfringens. A study conducted in a mouse 
model showed that pyolysin of T. pyogenes and phospholipase C of 
Clostridium perfringens, when used in combination, was effective in 
immuno-protection and reduced infections in mice challenged with 
T. pyogenes or Clostridium perfringens [26–28]. Based on the studies 
mentioned above, evaluating pyolysin and leukotoxin/ hemolysin 
combinations would be a possible combination to explore. 

Outer Membrane Proteins (OMP)

OMPs of Gram-negative bacteria serve as a barrier for any toxic 
materials entering the bacterial cell. The OMPs are associated with 
host-bacteria interaction, adhesion, and induction of protective 
immunity [29]. Like other Gram-negative bacteria, the primary 
infection in F. necrophorum commences by attachment to the 
epithelial and endothelial cells of the liver and ruminal wall [17, 
30] The attachment is facilitated by different adhesins and toxins, 
causing colonization and establishment in the liver parenchyma to 
cause an abscess [9,31]. Studies show that after the rumen entry, 
F. necrophorum enters through aggravated regions of the ruminal 
surface and enters portal circulation. Once trapped in the liver, it 
causes abscesses [11]. The OMPs of F. necrophorum facilitate direct 
interactions with the host and likely contain important constituents 
involved during infection, transmission, and survival, including 
putative vaccine candidates [17,32]. Therefore, a multivalent 
vaccine including OMPs and leukotoxin has been proposed in the 
past.

Previous studies identified adhesins that could have a potential 
role in the attachment of F. necrophorum to the host cells. Kumar et 
al., 2013 identified four adhesins (17kDa, 24kDa, 40kDa, and 74kDa) 
with high binding affinity to bovine adrenal gland endothelial cell 
line (EJG), in-vitro. Later, one of these adhesins was characterized 
as 42.4 kDa OMP FomA. [32]. FomA has been characterized in F. 
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nucleatum and F. periodonticum as well. Based on the N-terminal 
sequences, FomA protein in F. necrophorum has 96% homology 
with FomA of F. nucleatum [32]. This protein is immunogenic and 
plays a role in the attachment of bacteria to the host cells [33]. 
The FomA protein in F. nucleatum is TLR2 and voltage-dependent 
porin [34]. FomA is involved in NF-kB, regulating genes responsible 
for host immune response. The activation of NF-kB is through 
TLR2 dependent fashion [35], thus indicating FomA could trigger 
host immune response. These studies suggest that FomA could 
be a potential vaccine candidate for controlling F. necrophorum 
infections. However, detailed research on the mechanism of action 
and receptors is necessary to understand the virulence mechanism 
of FomA in F. necrophorum. 

FadA (13.6 kDa) is another membrane protein extensively 
studied for its role in the adhesion, invasion, and colonization of F. 
nucleatum in the host body [36,37]. FadA interacts with the vascular 
endothelial cadherin causing endothelial impermeability to allow 
the bacteria to cross through the tight junction of endothelium and 
proliferate to cause infections [38]. Moreover, many studies have 
suggested FadA adhesion is significant in inducing inflammation 
and suppressing host immunity by modulating the E-cadherin/ß-
catenin pathway leading to colorectal cancer (CRC) [39].

OmpA and OmpH Family Protein

OmpA is studied for its membrane-associated pathogenicity 
and biofilm formation in Gram-negative bacteria [40,41]. 
OmpA family proteins are attached to peptidoglycan layer (via 
diaminopimelic acid) with the conserved domain at the C terminus. 
[42]. These proteins are known for their role at different stages 
during infections, such as interfering with the complement system, 
adhesion to the host cell, and mediating biofilm formation in 
several Gram-negative pathogens such as Pseudomonas, Escherichia 
coli, and Acinetobacter baumannii [43]. OmpA also helps in the 
intracellular survival of bacterial pathogens [44–47]. 

OmpH, a structural component of OMP in Gram-negative 
bacteria, is closely related to the family of porins [48]. Immune 
efficacy of OmpH based vaccines preparation has been studied 
in bacterial species such as Pasteurella multocida. The OmpH 
based vaccine has been used for protecting swamp buffaloes from 
hemorrhagic septicemia in South Asian countries. [49]. OmpH 
has other functions as well such as in Pseudomonas aeruginosa, it 
provides stability to the outer membrane through interaction with 
lipopolysaccharide [50]. 

Hence, exploring and identifying these different OMP family 
proteins in F. necrophorum and their role in adhesion and inducing 
protective immunity during liver abscesses in cattle could be 
exploited to study their protective function and vaccine potential. 

Outer Membrane Vesicles (OMVs)

Outer membrane vesicles (OMVs) are spherical, membrane-
enclosed nanostructures released during bacterial growth. These 
nanostructures are composed of periplasmic proteins, toxins and 
sometimes genetic materials [51]. The OMVs play an important 
role in transporting toxins into the host cell and modulating 
the host immune reponse [51,52]. Therefore, OMVs, as efficient 
vaccine candidates, have received significant attention. In most 
cases, OMVs are shown to positively minimize infections in animal 
models [53,54]. The OMV based vaccine is successfully approved 
for Neisseria meningitidis and is currently the only licensed vaccine 
in humans [55,56]. OMV has also been studied as a targeted drug 
delivery vehicle and vaccine adjuvants [57,58]. OMVs are identified 
in Fusobacterium species, including F. nucleatum [59]. The OMVs 
of F. nucleatum have modulated the innate immune response by 
promoting inflammation [35,60]. Based on the proteomics analysis, 
OMPs serve as the significant components of OMVs. 

Conclusion
OMPs and OMVs could be potential vaccine candidates to 

control F. necrophorum infections in cattle based on the virulence 
and immunomodulatory role observed in different bacterial 
species, including Fusobacterium species. Therefore, identifying and 
characterizing these OMPs and OMV components in F. necrophorum 
could widen the area to explore and develop an effective vaccine.
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