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Mitochondrial dysfunction causes many symptoms, such as Alzheimer’s disease, 
angina, attention deficit, behavioral problems, chronic fatigue syndrome (CFS), 
diabetes, dementia, depression, hair loss, heart disease, immune dysfunction, muscle 
weakness, and pain, and skin rash (Dean and English [1]). We focus on therapeutics for 
mitochondrial dysfunction that arises from infection by the Epstein-Barr virus (EBV), 
which causes CFS and insomnia.

Introduction
Epstein-Barr virus (EBV) is ubiquitous in adults (90-95%) and 

is a DNA, γ-herpes virus, also known as Herpes Simplex Virus 5, HSV-
5, or Human Herpesvirus 4, HHV-4). EBV is associated with chronic 
fatigue syndrome (CFS) (Blomberg, et al. [2-10]). CFS symptoms 
include persistent fatigue that is not due to ongoing exertion, 
not alleviated by rest, and has reduced the patient’s activity level 
substantially. (White, et al. [9]) notes that two post-infectious-EBV 
forms exist: 

(1) With insomnia and 

(2) With hypersomnia. 

(Cooke, et al. [3]) associate latent EBV infection with psychiatric 
disorders (e.g., depression and manic-depressive illness). An EBV 
infection typically begins with a severe, acute flu-like infection: 
severe lethargy/fatigue, fever, and fever-induced sleep without GI 
upset. This acute phase is usually called infectious mononucleosis. 
(McFadden, et al [11]) found that EBV initially induces hyper-
proliferation that is quickly suppressed by activation of DNA damage 
response and G1/S-phase growth arrest with a rapid recovery  

 
(<72 hours) in immuno-competent patients. Recovery may take 6 
months or more in immune-compromised patients. The typical virus 
size is 0.02-0.4 microns, allowing viral penetration of a human-cell 
wall (Subramanian, et al. [12]). Inside the cell, the viral genome is 
injected into the cell’s cytoplasm, hidden from the immune system, 
while the virus replicates and gains control of cellular functions 
after the acute infection. This latent infection causes metabolic 
hijacking (Lange, et al. [13-16]) of acetyl-CoA, acetylation, 
glycolysis, Krebs cycle, lipid synthesis, and EBV-infected immune 
cells [B-cells (Hulse, et al. [16-18]); T- and natural-killer-cells 
(Imashuku [19]). The latent EBV infection normally continues for 
the rest of the patient’s life. The arrested cells have a reduced level 
of mitochondrial respiration and a decrease in gene expression for 
the Krebs cycle and oxidative phosphorylation. Arrested cells are 
characterized by increased expression of p53 pathway gene targets, 
including sestrins leading to activation of AMPK, reduction in 
mTOR signaling, and increased autophagy. A concomitant increase 
in glucose imports and surface glucose transporter 1 (GLUT1) 
occurs, leading to elevated glycolysis, oxidative phosphorylation, 
and suppression of basal autophagy. (Xiao, et al. [20, 21]) found 
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that latently infected cells have enhanced glucose and glutamine 
uptake with deregulated glycolysis. (Li, et al. [18]) showed that 
fatty acid synthesis is important for EBV lytic replication. The EBV 
latent membrane protein 1 (LMP-1) is expressed in many (but 
not all types) of EBV-1 and can induce SREBP1 and FASN, leading 
to increased lipid droplets (Lo, et al. [44]), sometimes leading to 
slightly elevated LDL.

Adenosine triphosphate (ATP) is the body’s currency of energy 
transfer. Figure 1 shows metabolism beginning with glycolysis that 

processes glycose into pyruvate, ATP, and lactic acid. Lactic acid 
(lactate) is a waste product that is converted via the liver’s Cori 
cycle into glucose; this conversion is particularly efficient in highly 
trained athletes [McArdle, et al. [22,23]). Pyruvate enters the Krebs’ 
cycle, which produces more ATP (Figure 2). Excess electrons and 
H+ from the Krebs’ cycle are converted into much more ATP in the 
electron transport chain (ETC). The Krebs’ cycle and ETC occur 
inside mitochondria. A typical cell has hundreds of mitochondria, 
while ~2000 are present in liver cells and none occur in mature red 
blood cells. Metabolic hijacking involves mitochondrial dysfunction.

Figure 1: Conversion of glucose into ATP, lactate and pyruvate that then enters the Krebs’ cycle.

Note: https://acutecaretesting.org/en/articles/lactate-and-lactic-acidosis/; accessed 12Sep2021
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Figure 2: Glycolysis processes glucose from food into pyruvate, plus two molecules of ATP. Pyruvate then enters the Krebs’ 
cycle (also called the citric acid cycle or tricarboxylic acid cycle) and is converted into two more ATP molecules. Excess electrons 
(carried by electron donors) and excess protons (H+) from the Krebs’ cycle are metabolized into many more ATP molecules in 
the electron transport chain (ETC). See [A.L. Lehninger et al. [43] for details.

Treatment of Mitochondrial Dysfunction

Mitochondrial dysfunction impairs ATP production, causing 
the diseases, as noted above. Amino and fatty acids from food can 
enter the Krebs’ cycle (Figure 3). Thus, supplementation with free-
form amino acids can boost energy and mitigate hypoglycemia 
under stress conditions (e.g., trauma, exercise, starvation, and 
disease) (Dohm, et al. [24-26]). The GABA shunt diverts GABA 
(gamma-aminobutyric acid) from the production of GHB (gamma 
hydroxybuterate) into production of succinate (Figure 4) under 
stress conditions (e.g., latent EBV infection that causes insomnia 
due to GABA and GHB deficiencies. Mitochondrial dysfunction can 
also arise from cofactor deficiency, for which vitamin and mineral 
supplementation is appropriate (DiPasquale [27]). Many co-factors 
are helpful in treating insomnia [e.g., B1 (250 mg), B2, B3 (250 mg), 

B5 (500 mg), B6 (25 mg, as P5P), B9 (as methyl folate—680 mg), 
B12, vitamin C, calcium citrate (315 mg), GABA (300 mg), Mg (1.2 
g), Zn, lipoic acid, tryptophan (1 g), fish oil (1 g)]. These co-factor 
deficiencies cause melatonin deficiency (Figure 5) and deficiencies 
in GABA and GHB (Figure 6). The commonalities in these pathways 
are magnesium, B6, zinc, and copper (an inhibitor to avoid after 
noon). B6 supplementation markedly improves sleep, along with a 
GABA-agonist (e.g., 1 mg Clonazepam). A review on mitochondrial 
dysfunction proposes antioxidants (CoQ10, alpha lipoic acid, 
and acetyl-L-cysteine) that are useful in singleton and paired 
combinations, but never tested as a triad (Pagano, et al. [28]). 
Other antioxidants are glutathione (poorly absorbed orally) and 
N-acetylcysteine (precursor of glutathione). Anti-inflammatories 
include turmeric (450 mg) and vitamin D (5000 IU).
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Note: https://courses.lumenlearning.com/boundless-biology/chapter/connections-of-carbohydrate-protein-and-lipid-
metabolic-pathways/

Figure 3: Proteins are converted into amino acids by a variety of enzymes. Usually, amino acids are recycled into the synthesis 
of new proteins or are used as precursors for synthesis of other important biological molecules (e.g., hormones, nucleotides, 
neurotransmitters). A deficiency in Krebs’ cycle reactant can cause shunting of some amino acids into the Krebs’ cycle, as 
shown here.

Figure 4: The GABA shunt bypasses two steps (oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) 
cycle via reactions catalyzed by three enzymes: glutamate decarboxylase, GABA transaminase, and succinic semialdehyde 
dehydrogenase. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the 
TCA cycle under stress conditions [Takayama and Ezura [45]].
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Figure 5: Metabolic network for tryptophan-5HTP-setotonin-melatonin. Starting from the top, vitamins B1/B6 and zinc are 
required for stomach acid production to break down proteins into amino acids; excess copper blocks B1 and zinc as co-factors 
for stomach acid production. Serotonin promotes happiness; serotonin deficiency results in depression, and/or anxiety, and/
or panic attacks. Melatonin promotes sleep, melatonin deficiency results in insomnia. Supplementation with Mg, Ca, Zn, and 
vitamins B1, B3, B5, B6, B9, and C improves sleep quality.

Figure 6: Metabolic network for glutamine-glutamate-GABA. Excess Cu inhibits this network as in Figure 5. B6, Mg, Zn are 
also co-factors in this network. [(https://drjockers.com/gaba/) accessed 15May2021].
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High-GABA food (e.g., tomatoes, spinach, oats, potatoes, 
sweet potatoes, corn) improves sleep. High-glutamate food (e.g., 
tomatoes, eggs, cheese, salmon, beef, spinach, nut butter, Parmesan 
cheese) is converted to GABA via B6 and magnesium for sustained 
sleep. Whole wheat bread (2 slices at supper) facilitates tryptophan 
transport across the blood-brain barrier to improve sleep. Latent 
EBV infection activates immune response of interferon-gamma 
(IFN- γ) that in turn triggers indoleamine-2,3-dioxygenase (IDO), 
which metabolizes tryptophan to kynurenine (rather than to 
5HTP→serotonin→melatonin (Mehraj, et al. [29,30]). EBV’s 
diversion of tryptophan to kynurenine decreases serotonin, and 
thus increases depression (Anderson, et al. [31]), making 5HTP a 
potential alternative to anti-depressive medications. (Schwarcz 
[32]) found that metabolites of the kynurenine pathway influence 
glutamatergic activity, including ionotropic and metabotropic 
receptors, vesicular glutamate transport, and generation/
scavenging reactive free radicals.

(Kermani [5]) notes that chronic (latent) EBV infection is 
associated with

a) Over-burdened organs, including the liver, pancreas, spleen, 
and gut

b) Cardiac dysrhythmias,

c) Elevation of IgG, IgM-antibodies and anti-nuclear body,

d) Reduction in natural killer and lymphocyte helper cells,

e) Deficiencies in trace elements, vitamins, antioxidant capacity,

f) Excess of heavy metals,

g) Hashimoto’s thyroiditis, which is usually associated with heavy 
metal toxicity, e.g., amalgam fillings,

h) Dental infections,

i) Additional lymphotropic pathogens, such as cytomegaloviruses, 
chlamydia, toxoplasma, and borrelia.

Treatment recommendations by (Kermani [5]) include alkaline 
infusion, vitamins B6/B9/B12/C, magnesium, selenium, zinc, and 
algae.

Numerous antivirals are used to treat EBV (Lieberman [6]), 
including:

•	 Glycyrrhizin in licorice root (Lin, et al. [33])

•	 Lauric acid/monolaurin,

•	 Butyrate in the form of tributyrin (Szentirmai [34])

•	 Quercetin

•	 N-acetyl cysteine,

•	 Co-enzyme Q-10,

•	 Exercise,

•	 Purified protein A from calf thymus (Riordan, et al. [35]),

•	 Proteflazid [Chopyak, et al. 2008],

•	 Valtrex (Sunde [36]).
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Conclusion
Ongoing research seeks novel diagnostics and therapeutics for 

EBV/CFS and EBV-induced cancers, such as EBV nuclear antigen 1 
and EBV-oncoproteins, LMP1 and LMP2A (Andrei, et al. [37-48]).
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