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Objective: Although not included within the group of most common cancers, 
hepatic tumors comprise a leading cause of cancer-related mortality around the globe. 
Herein, we assess incorporation of multimodality imaging for precise target definition 
of hepatic tumors.

Materials and Methods: Lesion size, localization and association with surrounding 
critical structures, symptomatology, and contemplated results of radiotherapeutic 
management have been thoroughly assessed. Definition of ground truth target volume 
was accomplished by a group of experts after thorough collaborative assessment, 
colleague peer review, and consensus to be used for actual treatment and comparative 
analysis.

Results: Reports of American Association of Physicists in Medicine (AAPM) and 
International Commission on Radiation Units and Measurements were considered 
in RT planning by expert radiation physicists by taking into account relevant normal 
tissue dose constraints. Optimal target coverage was prioritized in treatment planning 
while normal tissue protection was considered within the preset dose volume 
constraints. This study revealed that ground truth target volume was identical with 
target determination by CT-MR registration-based imaging for radiotherapeutic 
management of hepatic tumors. 

Conclusion: We conclude that visualization of data from multiple imaging modalities 
and incorporation of contemporary image registration and fusion techniques may 
dramatically improve target definition for more precise radiotherapeutic management 
of hepatic tumors. Admittedly, further studies are needed to shed light on this critical 
issue.

Introduction
Although not included within the group of most common 

cancers, hepatic tumors comprise a leading cause of cancer-
related mortality around the globe [1-4]. Unfortunately, majority 
of affected patients present with advanced disease at diagnosis 
with high tumor burden and impaired hepatobiliary function 
which typically limits utilization of curative-intent management by  

 
surgery, Orthotopic Liver Transplantation (OLT) or Radiofrequency 
Ablation (RFA). Prognosis is typically poor particularly in the 
setting of unresectable tumors and extensive venous involvement. 
Within this context, patients with unresectable hepatic tumors 
may receive systemic therapies, arterially directed therapies, and 
Radiation Therapy (RT) [1-4]. Use of RT has been historically 
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limited to palliative management [5]. Nevertheless, revolutionary 
advances in the field of radiation oncology and related disciplines 
have paved the way for contemporary radiotherapeutic approaches 
aiming at cure as well as symptomatic palliation [1-4]. Introduction 
of stereotactic irradiation has improved radiotherapeutic 
outcomes with improved accuary and precision under stereotactic 
immobilization and image guidance. Delivery of higher doses of 
radiation with stereotactic RT strategies have been possible with 
improved normal tissue sparing by steep dose gradients around the 
target volume. However, stereotactic irradiation is typically focused 
on relatively smaller and well-defined targets. Using ablative doses 
of radiation to treat relatively smaller targets has underscored the 
importance of accurate treatment volume definitions for optimal 
radiotherapeutic management. Herein, we assess incorporation 
of multimodality imaging for precise target definition of hepatic 
tumors.

Materials and Methods
In this study, we aimed to investigate whether multimodality 

imaging-based RT target volume definition improves interobserver 
and intraobserver variations to achieve optimal target definition for 
precise radiotherapeutic management of hepatic tumors. Within 
this context, RT target volume determination by incorporation of 
Magnetic Resonance Imaging (MRI) or by Computed Tomography 
(CT)-simulation images only has been comparatively evaluated. 
Ground truth target volume has been used for actual treatment and 
for comparative analysis and has been collaboratively determined 
by a group of experts after following meticulous evaluation, 
colleague peer review, and consensus. All patients were referred 
for radiotherapeutic management after detailed evaluation by a 
multidisciplinary team of experts to elucidate the indication with 
consideration of alternative therapeutic approaches, patient, 
tumor, and treatment characteristics. In the context of irradiation, 
lesion size, localization and association with surrounding 
critical structures, symptomatology, and contemplated results of 
radiotherapeutic management have been thoroughly assessed at 
the outset. 

After collaborative decision making for irradiation, all patients 
underwent RT simulation at the CT-simulator (GE Lightspeed RT, 
GE Healthcare, Chalfont St. Giles, UK) for acquisition of treatment 
planning images. Planning images were acquired and sent to the 
delineation workstation (SimMD, GE, UK) via the network for 
contouring of treatment volumes and normal tissues. Either CT-
simulation images only or registered CT and MR images have 
been used for target definition. Target definition by CT only and 
with incorporation of CT-MR registration was comparatively 
evaluated. Treatment dose calculation was performed individually 
for each patient in the Treatment Planning System (TPS) unit with 

consideration of electron density, CT number and HU values in CT 
images by also considering tissue heterogeneity. Synergy (Elekta, 
UK) linear accelerator (LINAC) has been utilized for precise RT 
with routine incorporation of IGRT techniques such as electronic 
digital portal imaging and kilovoltage cone beam CT for treatment 
verification.

Results
Reports of American Association of Physicists in Medicine 

(AAPM) and International Commission on Radiation Units and 
Measurements were considered in RT planning by expert radiation 
physicists by taking into account relevant normal tissue dose 
constraints. Calculation of treatment dose was performed with 
consideration of electron density, CT number and HU values in 
CT images by taking into account tissue heterogeneity. Optimal 
target coverage was prioritized in treatment planning while 
normal tissue protection was considered within the preset dose 
volume constraints. Definition of ground truth target volume was 
accomplished by a group of experts after thorough collaborative 
assessment, colleague peer review, and consensus to be used for 
actual treatment and comparative analysis. Synergy (Elekta, UK) 
LINAC was used for irradiation with routine utilization of IGRT 
techniques including kilovoltage cone beam CT and electronic 
digital portal imaging. Target definition by CT-only imaging and by 
CT-MR registration-based imaging was evaluated with comparative 
analysis. This study revealed that ground truth target volume was 
identical with target determination by CT-MR registration-based 
imaging for radiotherapeutic management of hepatic tumors. 

Discussion
Worldwide, a significant proportion of cancer related mortality 

is caused by hepatic tumors [1-4]. Unfortunately, majority of 
affected patients succumb to their disease due to advanced disease 
at presentation and unresectability with reduced hepatobiliary 
function. Curative-intent management by surgical resection, 
Orthotopic Liver Transplantation (OLT) or Radiofrequency 
Ablation (RFA) may be limited by high tumor burden and extensive 
venous involvement at the outset. Within this context, prognosis is 
typically poor for patients with hepatic tumors. Radiotherapeutic 
management with external beam RT and stereotactic irradiation has 
been used for treatment. While utility of RT was historically limited 
for palliation, contemporary radiotherapeutic strategies have been 
developed to combat with hepatic tumors to achieve rigorous 
management aiming at cure in selected patients. Oligometastatic 
disease has been recently more aggressively managed by ablative 
therapies to achieve optimal treatment outcomes. Stereotactic 
irradiation in the form of Stereotactic Radiosurgery (SRS) and 
Stereotactic Ablative Body Radiotherapy (SABR) has been 
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introduced as a viable radiotherapeutic modality providing high 
ablative doses to hepatic tumors with optimal normal tissue sparing 
through steep dose gradients around the target volume. Robust 
stereotactic immobilization and image guidance are prerequsites 
of ablative stereotactic RT approaches. 

In addition, optimal target definition is an indispensable 
component of successful stereotactic irradiation strategies. 
Treatment simulation for RT is typically performed by CT 
simulation in overwhelming majority of cancer centers as part of 
current radiation oncology practice. However, optimal visualization 
of hepatic tumors may be accomplished by multiphase imaging 
studies to differantiate sources of blood supply and kinetics of 
contrast enhancement [6]. In the era of multimodality imaging for 
hepatic tumors, Magnetic Resonance Imaging (MRI) may provide 
additional information for optimal target definition. The superiority 
of MRI in offering improved soft tissue contrast resolution may have 
important clinical implications for radiotherapeutic management of 
hepatic tumors. Image resolution and contrast of CT and MRI may 
be different throughout the human body. While bone-air density 
differences may be more successfully differentiated in CT, soft 
tissue differences may be more successfully distinguished in MRI 
[7-9]. In the millenium era, there is a trend towards incorporation 
of multimodality imaging to improve outcomes of radiotherapeutic 
management for hepatic tumors as well as several other cancers 
throughout the human body [10-44]. At this standpoint, our study 
may have implications and add to the accumulating data about 
incorporation of multimodality imaging-based target definition for 
radiotherapeutic management for hepatic tumors. 

There have been many critical advances in the discipline of 
radiation oncology with introduction of sophisticated treatment 
equipment and adaptive RT approaches, Intensity Modulated RT 
(IMRT), Image Guided RT (IGRT), Adaptive Radiation Therapy 
(ART), Breathing Adapted Radiation Therapy (BART), molecular 
imaging methods, automatic segmentation techniques, and 
stereotactic RT [45-82]. Management of cancer with contemporary 
radiotherapeutic strategies is an evolving field of active 
investigation and there is still room for further improvements. 
We conclude that visualization of data from multiple imaging 
modalities and incorporation of contemporary image registration 
and fusion techniques may dramatically improve target definition 
for more precise radiotherapeutic management of hepatic tumors. 
Admittedly, further studies are needed to shed light on this critical 
issue. 
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