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Mini Review
The interaction of virus plants is marked by the immobility of 

the first. This fact makes them impossible to “avoid” the viruses 
arrival. For their defense, plants have a group of physical barriers 
and a group of biochemical mechanisms Jones and Dangl [1-3]. 
Viruses have the help of vectors to overcome the plants physical 
barriers. Therefore, the final battle between plant and viruses is 
defined at cell and tissue level. In this sense, the biotrophic character 
of viruses is of particular interest, because they completely depend 
on the machinery of plant cells to complete their cycle, an aspect 
that determines the joint evolution of biochemical attacks and 
counterattacks between plants and viruses. Plants constantly face 
potentially pathogenic agents; for this, antiviral defense system is, 
in several aspects, more complex than that facing fungi and bacteria 
Liu, et al. [4,5]. At each stage of the virus-plant confrontation, 
complex responses and counter-responses are developed during 
the evolutionary process Zvereva, et al. [6-8]. General regulatory 
systems at the cellular level, less specific, but with a broad action  

 
spectrum and specific molecular mechanisms combine to prevent 
viral replication, cell-cell passage and long-distance movement 
within the host. Six molecular mechanisms have been described in 
plants to deal with viruses.

Innate Antiviral Immunity 
Plants recognize compounds of viral origin produced during 

infection that act as PAMP (Pathogen-Associated Molecular 
Pattern) or other effectors (capsid protein, movement proteins and 
replicase) as avirulence factors that activate PTI responses (from 
English: PAMP-Triggered Immunity) and ETI (Effector-Triggered 
Immunity), respectively Zvereva, et al. [6,9,10]. Both mechanisms 
result in the establishment of resistance in distant and non-infested 
tissues called SAR (Systemic Acquired Resistance) Glazebrook 
[4,11]. SAR can be activated by phytohormones such as methyl 
salicylic acid (MeSA), azelaic acid (AzA), dihydroabetinal (DA), 
glycerol-3-phosphate (G3P) and pipecolic acid (PIP) Shine, et al. 
[12,13].
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RNA Silencing 

Virus-infected plants accumulate dsRNAs (Virus-Derived 
Double-Stranded RNA), which induce the mechanism of RNA 
silencing or RNA interference. The dsRNAs are recognized by the 
DCL (Dicer Like) proteases that cut them into small pieces of 21 to 
24 nt called vsiRNAs (virus-derived short-interfering small RNAs). 
VsiRNAs regulate antiviral defense by inducing transcriptional 
and post-transcriptional silencing of viral genes Ceniceros-Ojeda, 
et al. [9,14,15]. The visRNAs associate with the AGO (Argonaute) 
proteins that are part of the RISC (RNA-Induced Silencing Complex) 
that cut into the viral single-stranded RNA. This recognition 
signal is transmitted to cells far from the initial point of infection, 
enhancing defensive responses in them Yang, et al. [16,17]. The 
RNA silencing mechanism is dependent on environmental factors 
such as temperature Rosa, et al. [18] and can explain various types 
of virus-plant interactions i.e. cross protection, phenotype recovery, 
non-host resistance Prasad, et al. 2019 and reversion of viral 
infection Gibson, et al. [19,20].

Suppression of Protein Translation 

Plants strictly regulate protein biosynthesis. In this sense, 
the antiviral activity of RIPs (Ribosome-Inactivating Proteins) 
characterized in Phytolacca americana L. against the potyvirus 
tobacco etch virus (TEV), PVY, among others, has been 
demonstrated. The expression of RIPs increases under stress 
conditions Domashevskiy, et al. [21]. Another mechanism for the 
suppression of protein synthesis is NIK1 (from the English: Nuclear 
Shuttle Protein (NSP) Interacting Kinase 1) and its homologues 
NIK2 and NIK3; these appear anchored to the cell membrane that 
can interrupt the global synthesis of proteins in the plant Zorzatto, 
et al. [22]. 

Atypical Dominant Viral Resistance 
The exploration of resistance mechanisms against viruses has 

resulted in the discovery of dominant resistance genes that are 
independent of those involved in the innate antiviral response. The 
products of the former, distinctively, act directly on viral proteins, 
preventing their activity and are referred to as ADVRPs (Atypical 
Dominant Viral Resistance Proteins). The most important ADVRPs 
are lectins e.g. RTM (Restricted TEV Movement) with activity 
against several potyviruses such as TEV, lettuce mosaic virus and 
plum pox virus, preventing their long-distance movement Choi, 
et al. [23]. Other ADVRPs have demonstrated their effect against 
other potyviruses such as the sugarcane mosaic virus Wu, et al. 
[24]. Protein degradation through ubiquitination and autophagy 
Ubiquitination is the major regulatory mechanism of protein 
synthesis in plants and has been shown to be effective against the 

proliferation of the tomato yellow leaf curl China virus, the turnip 
yellow mosaic virus and the tobacco mosaic virus. On the other 
hand, plants use a selective autophagy mechanism to degrade 
viral proteins, riboproteins Li, et al. [25] demonstrated for the NIb 
protein of potyviruses Shen, et al. [26].
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Ubiquitination is the major regulatory mechanism of protein 
synthesis in plants and has been shown to be effective against the 
proliferation of the tomato yellow leaf curl China virus, the turnip 
yellow mosaic virus and the tobacco mosaic virus. On the other 
hand, plants use a selective autophagy mechanism to degrade 
viral proteins, riboproteins Li, et al. [25] demonstrated for the NIb 
protein of potyviruses Shen, et al. [26].

Regulation of RNA Translation 

Plants have three mechanisms for regulating the translation of 
mRNAs i.e. NGD (from English: No-Go Decay), NSD (Non-Stop Decay) 
and NMD (Nonsense-Mediated mRNA Decay) Navickas, et al. [27]; 
Powers, et al. 2020. These mechanisms allow the degradation of 
viral RNAs Li, et al. [28] and have shown a predilection for visRNA 
Paudel, et al. [29]. Both NGD and NSD are effective against viruses 
with long adenine chains Szádeczky-Kardoss, et al. [30], while NMD 
has demonstrated its action against single-chain RNA + viruses Li, 
et al. [28]. 

Final Consideration
The interaction of these molecular mechanisms increases the 

defensive response of plants to face viruses Wu, et al. [24,30]. In 
order to develop diseases, viruses must counteract, at least in 
part, these barriers Rodamilans, et al. [5,31,32]. However, the 
development of the disease is not the most common result of the 
virus and plant interaction.
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