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The silicon capacitive pressure sensors are suitable devices for the biomedical 
applications due to the compatibility of the material with the human health and with 
the traditional technological processes of the microelectronic circuits and devices, 
allowing the integration with microprocessors of data in biomedical/telemedicine 
monitoring and low cost miniaturization. Therefore, for an accurate characterization of 
the micro-mechanical properties of the silicon membrane, in particular the membrane 
obtained from polysilicon layers, as active element of the silicon capacitive pressure 
sensors prepared by surface micromachining technology, it is obtained and discussed 
a new compact form of the theoretical relations of an electrical method applied to the 
beam test structures, integrated on the same micro-mechanical chip, and an accurate 
procedure allowing explicit analytical solutions and thus easy calculation of the 
Young’ modulus and residual stress, responsible for the bending of membrane, by the 
comparison of the theoretical calculations with the experimental data. 
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Introduction 

Microelectronics is nowadays a powerful contributor to our 
rapid development in all industrial, economics and social fields, 
because this became a potent tool of automation, communication, 
calculation, exploration, analysis and prediction [1], intervening also 
in biomedicine/biostatistics and healthcare [2,3], bioengineering/
biotechnology [4-7] and mass media field [8], based on the artificial 
intelligence and decision making [9] and unprecedented advances 
in the micro/nano-technologies [10,11]. Based mainly on the 
particular properties of silicon, a chemical element with transitory 
electrical conductibility between metals and isolators, and with 
easy processability on the entire surface areas of wafers within the  

 
planar technology, this became since the middle of the last century 
the central material for the fabrication of our intelligent microchips 
and Microelectromechanical Systems (MEMS), in particular 
capacitive sensors for biomedical applications [12-14]. Two main 
techniques are used to prepare the silicon capacitive sensors for 
biomedical applications: one of them based on bulk and another 
by surface micromachining technology, each of them allowing to 
obtain silicon thin membranes, with controllable micromechanical 
properties. Within the bulk micromachining techniques, consisting 
in the silicon bulk etching of preciously diffused wafers with boron 
high concentration to create a stop-layer of certain designed 

https://biomedres.us/
https://dx.doi.org/10.26717/BJSTR.2022.43.006926


Copyright@ Florin Gaiseanu | Biomed J Sci & Tech Res | BJSTR. MS.ID.006926.

Volume 43- Issue 4 DOI: 10.26717/BJSTR.2022.43.006926

34749

thickness [15-17], the accurate control of the thickness of the silicon 
layers can be obtained by the appropriate management of the 
diffusion [18,19] or implantation process [20], before the chemical 
etching. In this paper it is presented an accurate procedure for the 
rapid characterization of the micromechanical properties of the 
membrane – the key component of the of the capacitive sensors for 
biomedical applications, by using analytical solutions applied to an 
electrical method on test structures. 

Silicon Capacitive Sensors and Test Method for 
Micromechanical Characterization 

The silicon capacitive pressure sensors (SCPS) consists 
basically in a silicon membrane- typically circular, supported 
and limited by a lateral circular wall, which delimits also a cavity, 
where the flexible silicon membrane may bend as a function 
of the exercised pressure on it. Thanks to the compatibility of 

the silicon material with the human body and the possibility to 
fabricate many small units (thousands) of microstructures within 
the same planar technological processes, the SCPS permits a 
low-cost miniaturization, integrability with on-chip intelligent/
automatic data processors and versatility in novel treatments in 
the telemedicine, and long-term monitoring in various diseases 
like hypertension, hydrocephalus, or glaucoma pressure [12]. It is 
therefore of great importance to dispose of a rapid and accurate 
characterization procedure of the SCPS chips, even in earlier steps 
of processing, suitable for automatic measurements and evaluation 
on the fabrication line itself. In Figure 1 is inserted a schematic 
draw of a testing structure, which may be used for electrical 
measurements and the calculation of the residual stress (σ) and 
Young’s modulus (Y) of the polysilicon membrane, fabricated by 
surface micromachining technique. 

Figure 1: The variation of the beam pull-in voltage with the beam length calculated from the theoretical relations in a beam test 
system with d=1μm, h=1μm, Y=1.7E11 Pa and a set of positive and negative values of the residual stress in the range σ =(-1E8 
Pa ÷ 1E8 Pa); in the right side are represented schematically a cross section of a silicon capacitive pressure sensor and of a test 
beam structure.

This technique consist in the deposition process of a polysilicon 
layer with a thickness h according to the designed requirements, 
on a silicon dioxide substrate, which is subsequently removed 
in an etching solution, to obtain a cavity of the high d below the 
membrane. The test elements are included on the same silicon 
wafer, and consist in at least two suspended beams with distinct 
lengths (l), recommendable three, with the same thickness (h) with 
that of the polysilicon membrane, leaving below an air gap with 
the height d, as it shown in the inserted draw in the right side of 

the Figure 1. On each of these beams is applied a voltage, which 
determines a flection of the beam due to the electrostatic force 
induced by the voltage application, till a critic position (w) followed 
by a sudden physical contact with the bottom electrode substrate is 
attained, corresponding to a critical value V of the voltage, defined 
as the beam pull-in voltage [21]. The conditions describing the 
beam pull-in voltage critic stage give rise to two equations, which 
can be rewritten in a new more compact form [22] as follows: 

2 2 3/2 2 2 2 5/2 2 2/ (1 ) ( ) / 3 / 2(1 ) (3 ) /yV I x x x Y I yV I x x Y Iσ β α β σ= − − + = − − +  (1)
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where x = w/d (w representing the critical deflection of the 
beam, when this is suddenly pulled down to the substrate), α=(π2 
h2/3), β= (π2d2/4), γ=(εo/2π2hd3), εo representing the value of the 
vacuum electrical permittivity and γ = εoπ2 /16β(3αβ)½. From 
the last equality of the set (1) of relations, it can be deduced the 
following compact relation, suitable for the calculation of V if x is 
known, as follows: 

( ) ( )2 4 3 5/2(4 / 2) / 1 5V Y l x x xβ γ= − −    (2)

Moreover, substituting the expression γV2 l2/ x(1-x)3/2 obtained 
from the first equality of the set (1) of relations into the second 
equality of the same relation, it is obtained a new simplified 
equation, suitable to calculate an explicit solutions for x, as follows: 

3 29  6  5   2   0x x Sx S− + − =  (3)

where S = (σ l2/βY + α/β). This is an equation of the third 
degree in x, which can be solved analytically to find an applicable 
real solution for S>0, and another for S<0. The real solution when 
S>0 is given by xo + as follows:

( )( ) ( ) ( ) ( ){ } ( )( ) ( ) ( ) ( ){ }  2 / 9 2 / 3 3 / 2 1/ 9 1/ 3 5 / 4 1/ 3 3 / 2 1/ 9 2 ½ 2 / 3 3 / 2  1/ 9    1/ 3 5 / 4 1/ 3 3 / 2 1/ 9 2 ½ xo S S S S S S+ = + + + − + + + + − − + +      ⅓ ⅓ ⅓ ⅓(4)

and by xo – (when S is negative), getting values into the interval [-1, 0], as follows: 

( )( )( ) ( ) ( ) ( )   2 / 9  4 / 3 3 ½ 5 / 4 1/ 3 ½ 1/ 3 3 ½ / 2 1/ 9 / 5 / 4 1/ / ²{ 3 ³xo S cos arccos S S− = + + + −    (5)

 This set of relations permit the representation of the pull-in 
voltage V as a function of the residual stress σ and Young’s modulus 
Y. It is to be noted that the relation (2) expresses the dependence 
of V on l, as required by the experimental purpose, but also on 
x, a quantity which depends also on l implicitly. Therefore, it is 
necessary to use the real solutions of the equation (3) for S>0 and 
for S<0, as mentioned above, expressed by the relations (4) and (5).

Results and Discussion 
In order to obtain accurate measurement data with SCPS, the 

values of the internal stress induced by the technological processes 
into the silicon membrane should be minimal, to avoid the 
membrane/beams deformations/bandings. A compressive residual 
stress is described by negative values of σ, while a tensile stress 
determines positive values of σ. The variation of the beam pull-in 
voltage with the length of the beams is represented in Figure 1 for 
d=1μm, h=1μm, Y=1.7E11 Pa (a typical values for polysilicon layers 
preciously used [21,22]) and of positive and negative values of the 
residual stress in the range σ =(-1E8 Pa ÷1E8 Pa); the notation E8 
represents the power of 10 indicated by the exponent 8, used for 
the evaluation of the internal stress in the beam. In the right side 
are represented schematically a cross section of a silicon capacitive 
pressure sensor and a test beam structure. As it can be seen from 
this figure, the using of beams with the geometrical parameters 
d=1μm, h=1μm and with lengths less than about 120μm, are not 
recommendable for the preparation of the beam test structure, 
due to the very close values of pull-in voltage corresponding to 
small variations of the beam length, making difficult to distinguish 
between the curves corresponding to distinct stress values, even if 
they differ by an order of magnitude each other. 

In other words, as it can be seen from Figure 1, for values of σ 

in the range (-1E7 Pa < σ < 1E7 Pa), small variations in the beam 
length produce large variations of the beam pull-in voltage, so this 
range is inadequate for determination of the residual stress. It can 
be seen also that if we refer to a beam of a length l, a compressive 
stress, which determines the banding of the beam, requires smaller 
values of the beam pull-in voltage than that for σ=0 or positive 
values of σ which correspond to a tensile stress in the beam, as it is 
also to be expected. According to the above observations, it results 
that in the range (-1E7 Pa < σ < 1E7 Pa), the corresponding stress 
induces relatively low differences between the curves V(l), showing 
that the residual stress in this range has low effects on the beam 
behavior with respect to that corresponding to σ=0 Pa. In the Figure 
2, representing the variation V(l) in the range (-1E7 Pa < σ < 2E7 
Pa) for a beam testing structure with h=2μm, d=1μm, Y=1.7E11 Pa, 
is better distinguished such a behavior. 

It can be observed from this figure that the variation of the 
value of the pull-in voltage in the interval (-1E6 Pa < σ < 2E6 Pa) 
is very low (less than 1V) for the same beam length, which would 
require a high sensitivity of the testing tool to discriminate finally 
the true value of σ. Such a small variation indicates actually the low 
effect of the residual stress on the membrane on this range. The 
thickness of the membrane, the same with that of the beam testing 
structure, is also important for the beam response. In the Figure 3 it 
is represented the variation of the beam pull-in voltage as a function 
of the beam length, for various values of the beam thickness, i.e. 
h=0.5 μm, h=1 μm and h=2 μm, for the same high of the air gap, d=1 
μm. From this Figure results that the bending of the beam starts the 
later, as the greater the thickness of the beam is. The pull-in voltage 
values for beams with a thickness of 0.5 μm and 1 μm are close each 
others, for beam lengths larger than 250 μm, but very different (of 
the order of 10V) for the beam thickness of 2 μm. 
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Figure 2: Variation V(l) for V< 10 V on a test polysilicon beam structure with h=2μm, d=1μm, Y=1.7E11 Pa, for various values 
of the residual stress in the interval (-1E7 Pa < σ < 2E7 Pa).

Figure 3: Comparison between the variation V(l) calculated for σ=1x1E7 Pa, Y=1.7x1E11 Pa and d=1μm, corresponding to 
various thickness values h=2μm, 1μm and 0.5 μm of the testing beams.

These results indicate the necessity to properly design the 
dimensions of the beams, according to the calculations presented 
and discussed here, for an accurate evaluation of the mechanical 
properties of the beams, so of the polysilicon membrane of SCPS. 
For an accurate extraction of the mechanical parameters of 
polysilicon layers, σ and Y, the pull-in voltage method should be 
applied at two distinct polysilicon beams, with distinct lengths, and 
the mathematical relations (2) and (3), together with (4) or (5) are 
to be applied. A better procedure would consist in the fitting of a 

theoretical curve like that shown in the Figures 1-3, on three or 
more measurements V-l data. The comparison of the experimental 
data with the theoretical calculations best fitting the data, allows 
an accurate calculation both of the residual stress and Young’s 
modulus corresponding to the polysilicon layer for the preparation 
of the SCPSs. The accessibility of the test structures immediately 
after technological processes, permits the optimization of the 
technological process, especially the polysilicon deposition, doping 
and annealing treatment [23].
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Conclusion
The silicon capacitive pressure sensors are very suitable 

devices for biomedical applications both as material and the 
low-cost miniaturization, the adaptability for microelectronic 
integration with on-chip intelligent/automatic processors of 
data and versatility in the novel procedures of telemedicine and 
monitoring in hypertension, hydrocephalus, or glaucoma pressure. 
In particular, the surface micromachining technology offers the 
possibility to use the traditional technological processes of the 
fabrication of the microelectronic circuits and devices and the 
experience accumulated on this field, and integration of the beam 
test structures for the measurement of the micromechanical 
properties of the membranes of the silicon capacitive pressure 
structures, specifically the residual stress and the Young’s modulus, 
with major effects on the final device performances. The new 
compact form of the relations describing the beam pull-in voltage 
method, leading to an equation of the third degree and explicit 
analytical solutions, allows an accurate and rapid preliminary 
calculation of the material parameters on the fabrication line for 
the process optimization, and appropriate design and preparation 
both of the silicon capacitive pressure structures and polysilicon 
beam tests. 
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