
Copyright@ Gregory M Constantine | Biomed J Sci & Tech Res | BJSTR. MS.ID.007014. 35283

Research Article

ISSN: 2574 -1241       DOI: 10.26717/BJSTR.2022.44.007014

Rank-based Models for Predicting  
Trauma-Related Organ Failure

Gregory M Constantine1*, Marius G Buliga2, Rodica RA Constantine3, Yoram Vodovotz PhD4,5, 
Rami A Namas MD4,5 and Timothy R Billiar MD4,5

1Department of Mathematics and The McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
2Department of Mathematics and Statistics, University of Pittsburgh-Bradford, USA
3Department of Psychology, University of Nevada, Las Vegas, USA
4Center for Inflammation and Regenerative modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 
USA
5Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, USA

*Corresponding author: Gregory M Constantine, Department of Mathematics and The McGowan Institute for Regenerative 
Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA

ARTICLE INFO ABSTRACT

Received:  May 19, 2022

Published:  May 30, 2022

Citation: Gregory M Constantine, Marius 
G Buliga, Rodica RA Constantine, Yoram 
Vodovotz PhD, Rami A Namas MD, Timo-
thy R Billiar MD. Rank-based Models for 
Predicting Trauma-Related Organ Fail-
ure. Biomed J Sci & Tech Res 44(2)-2022. 
BJSTR. MS.ID.007014.

In this study, diagnostic nonparametric tests based on rank-sums of biomarkers 
and clinical variables were developed for predicting a binary response for organ 
failure dysfunction. The nonparametric approach is used in order to more effectively 
deal with the widely different dispersion scales of data within different biomarkers. It 
is shown that it performs better in terms of specificity and sensitivity statistics than 
other commonly employed methods such as sparse logistic regression, random forests 
and decision trees. A Bayesian posterior distribution and credible intervals on the 
probability of developing organ failure given that the diagnostic test is positive was 
then calculated, based on non-informative priors. Typical examples come from trauma 
data on biomarker and clinical variables from a first blood draw following critical 
injury, and we apply the developed methodology here to such a case. We conclude 
that the proposed nonparametric methods are well adapted to be applied to data with 
characteristics typically encountered in the trauma population.
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Introduction
Improvements in pre-hospital care and development of trauma 

systems lead outcomes following traumatic injury to expand 
from a focus on mortality to complications such as multiple 
organ dysfunction (MOD) and prolonged critical illness [1,2]. The 
overarching current clinical challenge is that of reducing short- 
and long-term morbidity through early-targeted interventions. 
We refer to (Lamparello, et al. [3]) for a detailed motivational 
narrative underlying the primary medical issues involved. A typical 
adverse outcome in such patients is Multiple Organ Dysfunction 
Syndrome (MODS) which peaks between 2 and 5 days after severe 
injury. It is, therefore, helpful to develop a method that predicts 

the occurrence of MODS early after arrival to a trauma center. To 
accomplish this, we used readings of inflammation biomarker 
levels and routine clinical variables obtained after arrival to our 
trauma center. From these readings, we sought to estimate whether 
there will or will not be the onset of organ dysfunction by five days 
post injury using an optimized MODS metric based on the Marshall 
MODS score [4], calculated on days 2 through 5 and defined as the 
average Marshall MODS score of days 2 through 5 (a MODS D2-D5). 
In addition, knowing the prevalence of developing organ failure 
from the available data, along with the sensitivity and specificity 
of our diagnostic test, we can compute the probability of a patient 
to develop MODS given that the patient has a positive test with our 
diagnostic. Our rank sum diagnostic test yields a sensitivity of 86% 
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and specificity of 70% for predicting a MODS D2-D5 threshold. 
Other commonly used methods for such data, specifically sparse 
logistic, random forests and decision trees, yield sensitivity in the 
mid-sixties to mid-seventies and specificity in the mid-fifties to 
mid-sixties (using distance to point (0,1) on the Receiver Operating 
Characteristic (ROC) curve). In summary, we develop a tractable 
Precision Medicine scheme through a nonparametric rank based 
statistical method that helps in the early identification of trauma 
patients with high risk of developing elevated MODS scores by day 
5 of ICU stay, allowing for a prognosticating tool that is likely to aid 
in clinical trial design and in patient care decision support.

Development of Nonparametric Models
Circulating inflammation biomarker data that are obtained 

from trauma patients involve rather different scales of 
measurement for each biomarker. For certain biomarkers there 
are occasional readings that are many times the median value; in 
one biomarker, for example, the maximum reading was over 1200 
times the median value. These readings are not outliers, as they 
are found consistently. Such sweeping ranges in some biomarkers 
but not in all of them, make classification based on parametric 
analysis particularly challenging. We endeavored to standardize 
these biomarker responses as we sought classifiers that would 
allow good separation of patients with low MODS scores from 
those with high MODS scores. Among the standard techniques 
we applied were Sparse Logistic Regression, Random Forests, 
and Decision Trees. We then developed our own nonparametric 
rank-sum classification model that is described in detail below. A 
comparison of these four methods was obtained by training each 
model on the same 70% on the data and computing its performance 
on the remaining 30%; the performance is described in terms 
of sensitivity and specificity - the point on the ROC curve that is 
closest to (0,1). This was repeated 20 times. Table 1 summarizes 
the results. For this data set, and we believe for similar biomarker 
data, nonparametric models may prove to be better classifiers. 
Nonparametric techniques on biomarker data have been used 
in cancer treatment [5,6]. Further mention and ad hoc uses of 
nonparametric techniques applied to biomarker data are also found 
in Baker [7] and Shahjaman, et al. [8]. The nonparametric rank-sum 
method developed here may be viewed as a sparse all-regressions 
choice that either includes or excludes sets of variables; in this 
sense, it can also be interpreted as a Lasso model. We selected a 
percentage of data on which to develop and train our model and 
used the remaining data to predict the binary response. Initially, 
we converted the data to ranks. By restricting to main effects only, 
we sought the variables that yield the highest main effects with the 
response. This reduces the dimensionality of the data sufficiently so 
as to allow us to run all subsets of the remaining variables (as rank-
sum models) and monitor which variables occur most frequently. 

We found that often the best subset involves s variables, where s 
is typically approximately half the total number of variables from 
which we chose. With the best s variables identified, we proceeded 
in summing the ranks and use that as a nonparametric predictor 
of the binary response. The model selected was that which yields 
the pair (se, sp), of sensitivity and specificity, with both se and sp 
as high as possible. Realizing that these are dependent quantities 
controlled by the Receiver Operating Characteristic (ROC) curve, 
we selected (se, sp) such that (1 − sp, se) is the point closest to (0, 
1) on the ROC curve.

Next, we sought to utilize the above model as a diagnostic tool 
having as input the biomarker and clinical variable data obtained 
from the first blood draw and as output either 1 (positive, or 
high MODS defined as a MODS D2-D5 > 3) or 0 (negative, or low 
MODS defined as a MODS D2-D5 < 3). This was used as a Bayesian 
setup for estimating the posterior probability of developing high 
MODS given that the diagnostic tool yielded a positive result. We 
based this on Binomial and non-informative Beta priors on the 
parameters to be estimated and simulated from the posterior 
Beta distribution to generate credible intervals for our estimates. 
The work in producing Table 1, as well as these rank-sum models, 
were developed using R (The R Project for Statistical Computing) 
and S-PLUS (Insightful Corporation. Seattle, WA). More specifically, 
we had 355 patients included in the construction of the model. The 
outcome used for identification of the prognostic variables was 
the average of MODS score measured daily on post-injury days 2 
through 5 (a MODS D2-D5). An a MODS D2-D5 score ≥ 3 was defined 
as high MODS (recorded as a 1) and an a MODS D2-D5 score < 3 
was defined as low MODS (recorded as a 0), in line with the clinical 
understanding on the onset of MODS. Our modeling process was as 
follows. In general, we denote by Y the binary response and by X1, 
X2, . . . , Xm the variables we used as potential predictors of Y . If the 
data on these variables were available on n subjects, we can view 
the data as a n × m matrix X (each subject corresponding to a row) 
with the ith column indexed by the variable Xi. Data on Y is a n × 1 
vector having 0 and 1 as entries, with rows indexed by subjects in 
the same order as the rows of X. Next, we randomly, and without 
repetition, selected  a “training Subset” of subjects (or rows of X) 
on which we built the model. We then used the remaining rows as 
a” testing-set” for the model we developed. In this trauma patient 
stratification application, we trained the model on 70% of the 355 
subjects and tested it on the remaining 30%, where Xt and Yt denote 
the data matrix and response associated with the training set.

Selection of Significant Variables in the Training Set

We performed a screening for main effects of the columns of Xt 
by using Wilcoxon rank-sum tests for each column with the binary 
response Yt; then, we selected the columns that had significant 
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p-values less than a fixed threshold. This often yielded reasonable 
variable choices, but we also utilized the following more robust 
approach, which casts a wider net for capturing significant variables 
by examining subsets of the “training set”. First, we fixed r, a number 
of rows of Xt. We then simulated s times (e.g., s = 10, 000) matrices 
with r rows randomly selected from those of Xt. For each choice, 
we performed a Wilcoxon rank-sum test to compute the vector 
of p values for each of the m variables with the correspondingly 
trimmed sub vector with r entries of Yt. Next, we averaged these s 
vectors of p-values. We next selected as significant variables those 
with average p-values less than a specified threshold. We suggest 
choice of r of 80% or more of the numbers of rows in Xt. This 
approach often yields significant variables that will differ from those 
obtained by merely restricting to the original columns of Xt. We also 
remark that while averaging of vectors of p-values can be done for 
a fixed value of s, incorrect inferences will result if such averaging 
is done for differing values of s. However, different values of s can 
be tried, and one can examine how consistent the average vectors 
of p-values are. In our particular application, this approach yielded 
a total of 14 variables with significant main effects, out of the initial 
7 clinical and 31 biomarker variables available, using a p-value 
threshold of α = 0.03. Specifically, the variables were chloride (Cl), 
carbon dioxide (CO2), creatinine, partial thromboplastin time 
(PTT), platelets, IL-21, IL-23, IL-6, IFN-γ, IL-7, IL-8, IL-17A, IL-
10, and MCP-1. The matrix Xt for our data now consisted of these 

14 columns. While restricting to main effects in our selection of 
variables hides possibly more subtle multifactor interactions, such 
dependencies are generally very difficult to model successfully in 
biological responses which, unlike engineering uses, are typically 
difficult to replicate.

Further Variable Reduction and Interpretability

Whenever possible, we aimed to produce models that are 
intuitive and as simple as possible, subject to providing a reasonable 
explanation of the existing data and the underlying biological 
phenomena. With this at heart, we used ranks (rather than raw 
data); this immediately goes a long way in addressing issues of 
occasional large swings in certain biomarker readings. Ranks also, 
by their very nature, normalize the variables and rank-sum models 
extract just subsets of significant variables, rather than weighted 
sums. We thus restricted to rank-sum models. Among columns of 
Xt (all with p-value < α), some have positive and others negative 
Wilcoxon rank statistics. We therefore replaced each column with a 
negative Wilcoxon statistic in Xt by its negative in order to associate 
high ranks only with large positive values. This simplified the 
rejection region for a rank test. We next denoted by Rt the matrix 
obtained from Xt by replacing (so modified) entries in each column 
by the corresponding ranks. Through the process of dimensionality 
reduction, we reduced the number of columns of Xt from m to k (≤ 
m). Hence, Rt has k columns.

Figure 1: Receiver operating characteristic (ROC) curve for the prognostic model derived using data from the derivation 
cohort. ROC curve for the model based on the combination of admission clinical variables and inflammation biomarkers 
(sensitivity = 86% and specificity = 70%), AUC = 0.78 (out of 1.0).
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For values of k within a manageable computational range 
(typically less than 30), we examined models of the following 
form. First, we selected a subset of s columns of Rt and summed 
them up to obtain vector Vs. We considered Vs a possible model to 
predict Yt. Specifically, we decided that the entries in Vs that are ≥ 
a cutoff c predict a 1 in Yt; the rest predict 0. Cutoff c was chosen 
so as to optimize the vector (sensitivity [se] and specificity [sp]). 
If this approach seemed too exhaustive (not being a linear order), 
we optimized the sum of se and sp. Typically, we wanted both 
entries se and sp to be as large as possible. The approach is similar 
to” all-regressions” in the more common non-discrete parametric 
settings. Working on the” training set”, the best model that emerged 
comprised the following variables: CO2, creatinine, PTT, IL-6, IL-7, 
IL-10, and MCP-1. We note that the biomarker variable IL-7 was 
negated, that is, its sign was changed in Xt. The performance of this 
model in the” testing-set” yielded (se, sp) = (0.86, 0.70), the closest 
point to (0, 1) on the ROC curve. The ROC curve for the model 
appears in Figure 1, with an area under the curve (AUC) of 0.78 
(out of 1.0).

Bayesian Inference on the Probability of Developing 
Mods (Table 1)

In the previous sections we constructed a rank-based diagnostic 
test that predicts the onset of MODS from biomarkers and clinical 
readings obtained from the earliest blood draw upon admission 

to the ER. The sensitivity and specificity rates for this diagnostic 
test were 0.86 and 0.70, respectively. Also known, from the data 
and possibly medical literature, is the prevalence rate of MODS in 
critically injured patients - it is 68/355 = 0.192, or about 1 in 5 in 
our data. Of interest is the estimation of the probability p that a 
critically injured patient develops MODS knowing that the patient 
tested positive by our diagnostic test. We use known techniques, 
found in Berger [9], to formulate an answer. Denote by p0 the 
(unknown) prevalence rate of MODS for the population of critically 
injured patients; our best estimate for p0 is pˆ0 = 0.192 that we 
mentioned above. The theoretical sensitivity rate of our diagnostic 
test is not known and denoted by p1; our estimate from data is 

1 0.86p
∧

= . Likewise, for the specificity rate we have 1-p2 estimated 

from our diagnostic test as 2 1 0.70 0.30p
∧

= − = . If p denotes the 
theoretical probability that a patient that tested positive by our 
rank-based diagnostic actually has MODS, then an application of 
Bayes rule immediately yields:

0 1

0 1 0 2

.
. (1 ).

p pp
p p p p

=
+ −

Substituting in our estimates immediately yields a point 

estimate for p; it is 0.40p
∧

= . In summary, knowing that a patient 
tested positive on our rank based diagnostic test more than doubles 
the patients’ chances of developing MODS by day 5 in the ICU.

Table 1: Twenty simulations from our data show the mean and standard deviation of the sensitivity and specificity values obtained 
for each of the four methods used. The models were obtained by using a training set of 70% and testing set of 30% from our data set.

n = 20 Mean Sensitivity St Dev Sensitivity Mean Specificity Std Dev Specificity

Sparse Logistic 77.3 9.1 65.4 6.4

Random Forests 73.6 7.8 63.1 7.1

Regression Trees 71.1 10.2 57.2 6.1

Nonparametric Rank-sum 83.4 8.2 71.1 5.7

Constructing Credible Intervals

With 0 1 2p , p , p  as defined above, in our data we estimate 

pi  by p ,i
i

i

x
x

∧

= . Here 0n  is the number of patients in our data, 
and 0x  is the number of patients in the data that have MODS; 

consequently, 0
0

0

68 p
355

x
η

∧

= =  is the estimate from our data of the 
prevalence of MODS in the population of traumatically injured 
patients at large. By 1n  we denote the number of patients in our 
data known to have MODS who underwent the blood test, and 1x  
is the number of such patients on which the test was positive; thus 

1 1 10.86 20 / 23 /x n p
∧

= = = (estimate of sensitivity). Likewise, 2n
is the number of patients in our data that do not have MODS but 

tested positive; in our case 2 2 20.3 25 / 83 /x n p
∧

= = =  is equal to 1 
− specificity. 

Assume that the ix  written above are realizations from the 
Binomial ( , )i ipη distribution 0,1,2i = . We place the uninformative 

1 1,
2 2

Beta  
 
   - also known as the Jeffries prior - as prior distribution 

on , 0,1, 2ip i = . Then the posterior distribution for ip , after the 
data ix  is observed, has probability density function proportional 

toU , which is the 
1 1,
2 2i i iBeta x n x + − + 

   distribution. We can 
now generate credible intervals for p  by simulating out of 
these Beta distributions. Randomly pick an observation ip  

from each of 1 1, , 0,1, 2
2 2i i iBeta x n x i + − + = 

 
. Register the value 
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0 1

0 1 0 2

.
. (1 ).

p pp
p p p p

=
+ − . Repeat this process 5,000 times. Determine 

numbers L and U such that of the 5,000 values generated 

 2100
α

 percent are lower than L and 2100
α

percent are greater than 
U. The interval (L, U) is a 100 %α  credible interval for the unknown 
parameter p . Recall that the point estimate for p  is 0.4. With our 
data we performed such a simulation, by writing a quick program in 
R, and obtained the following 90% and 95% credible intervals for p, 
respectively: (0.314, 0.497) and (0.302, 0.514).
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