
Copyright@ Ferrat Dincoglan | Biomed J Sci & Tech Res | BJSTR. MS.ID.007082. 35691

Research Article

ISSN: 2574 -1241       DOI: 10.26717/BJSTR.2022.44.007082

Appraisal of Target Definition for Management of 
Paraspinal Ewing Tumors with Modern Radiation 

Therapy (RT): An Original Article

Ferrat Dincoglan*, Selcuk Demiral, Omer Sager and Murat Beyzadeoglu 
Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Turkey

*Corresponding author: Ferrat Dincoglan, University of Health Sciences, Gulhane Medical Faculty, Department of 
Radiation Oncology, Gn. Tevfik Saglam Cad. 06018, Etlik, Kecioren Ankara, Turkey

ARTICLE INFO ABSTRACT

Received:  May 25, 2022

Published:  June 20, 2022

Citation: Ferrat Dincoglan, Selcuk Demi-
ral, Omer Sager, Murat Beyzadeoglu. Ap-
praisal of Target Definition for Manage-
ment of Paraspinal Ewing Tumors with 
Modern Radiation Therapy (RT): An 
Original Article. Biomed J Sci & Tech Res 
44(4)-2022. BJSTR. MS.ID.007082.

Keywords: Paraspinal Ewing Sarcoma; 
Radiation Therapy (RT); Magnetic Reso-
nance Imaging (MRI)

Abbreviations: AAPM: American Asso-
ciation of Physicists in Medicine; ICRU: 
International Commission on Radiation 
Units and Measurements; LINAC: Lin-
ear Accelerator; IGRT: Image Guided RT; 
ART: Adaptive RT; CT: Computed Tomog-
raphy; RT: Radiation Therapy; MRI: Mag-
netic Resonance Imaging

Objective: Radiation therapy (RT) may be utilized as part of multidisciplinary 
Ewing sarcoma management. Every effort is made to avoid radiation induced toxicity 
in radiotherapeutic management of Ewing sarcoma. Exploitation of image guided RT 
(IGRT) techniques, adaptive RT, and improved target definition are among the several 
considerations for contemporary radiotherapeutic management with an improved 
toxicity profile. Currently, majority of cancer centers utilize Computed Tomography 
(CT) simulation for RT planning for Ewing sarcoma. While CT is an effective imaging 
modality, incorporation of other imaging modalities such as Magnetic Resonance 
Imaging (MRI) may result in improved target definition for radiotherapeutic 
management. In this study, we assessed RT target definition for paraspinal Ewing 
sarcoma by use of multimodality imaging.

Materials and Methods: Patients receiving RT for paraspinal Ewing sarcoma 
were assessed with comparative analysis to explore whether multimodality imaging 
improves target volume definition, interobserver and intraobserver variations for 
radiotherapeutic management of Ewing sarcoma. To address this critical issue, we 
comparatively assessed RT target volume determination by integration of MRI or by 
CT-simulation images only.

Results: Patients referred for radiotherapeutic management of paraspinal Ewing 
sarcoma at the Department of Radiation Oncology, Gulhane Medical Faculty, University 
of Health Sciences have been studied for target volume determination by either CT-
only imaging or by CT-MR registration-based imaging in this original study. Ground 
truth target volume has been found to be identical with CT-MR registration-based 
imaging in this study for radiotherapeutic management of paraspinal Ewing sarcoma.

Conclusion: Our study suggests improved target volume definition for 
radiotherapeutic management of paraspinal Ewing sarcoma by incorporation of MRI 
in RT planning procedure. Admittedly, there is need for further supporting evidence.

Introduction
Ewing sarcoma, initially described by James Ewing in 1921, 

may be broadly categorized as a high-grade osteolytic bone tumor 
which may occur at several localizations throughout the skeleton  

 
albeit with a tendency to involve the diaphysis of long bones [1-
11]. Children and adolescents are more frequently affected, 
and multidisciplinary management is required for improved 
therapeutic outcomes [3-11]. Radiation therapy (RT) plays a 
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major role in treatment of Ewing sarcoma, and there have been 
improvements in radiotherapeutic management recently [3-11]. 
Since younger patients are more commonly diagnosed with Ewing 
sarcoma, adverse effects of irradiation should be thoroughly 
considered before radiotherapeutic management. While RT is a 
viable therapeutic option for a variety of cancers, pediatric patients 
should be more vigilantly considered for irradiation in view of 
the toxicity and consequences regarding quality of life. Younger 
patients still in the process of growing may be negatively affected 
by adverse irradiation effects. Nevertheless, RT may be utilized as 
part of multidisciplinary Ewing sarcoma management. Every effort 
is made to avoid radiation induced toxicity in radiotherapeutic 
management of Ewing sarcoma. Exploitation of image guided 
RT (IGRT) techniques, adaptive RT (ART), and improved target 
definition are among the several considerations for contemporary 
radiotherapeutic management with an improved toxicity profile. 
Currently, majority of cancer centers utilize Computed Tomography 
(CT) simulation for RT planning for Ewing sarcoma. While CT 
is an effective imaging modality, incorporation of other imaging 
modalities such as Magnetic Resonance Imaging (MRI) may result 
in improved target definition for radiotherapeutic management. In 
this study, we assessed RT target definition for Ewing sarcoma by 
use of multimodality imaging.

Materials and Methods
Patients receiving RT for Ewing sarcoma were assessed with 

comparative analysis to explore whether multimodality imaging 
improves target volume definition, interobserver and intraobserver 
variations for radiotherapeutic management of Ewing sarcoma. To 
address this critical issue, we comparatively assessed RT target 
volume determination by integration of MRI or by CT-simulation 
images only. Ground truth target volume has been determined for 
every patient on a collaborative basis by board certified radiation 
oncologists after detailed assessment, colleague peer review, 
and consensus for actual treatment and comparison purposes. 
Included patients had paraspinal Ewing sarcoma, and management 
with RT was decided after close collaboration and detailed 
multidisciplinary evaluation on an individual basis. We considered 
optimal therapeutic approaches and protocols by meticulous 
evaluation of patient, tumor, and treatment characteristics. Decision 
making procedure included thorough consideration of lesion sizes, 
localization and association with critical structures, contemplated 
outcomes of treatment, patient symptomatology and preferences 
along with logistical issues. RT delivery has been accomplished by 
use of Synergy (Elekta, UK) linear accelerator (LINAC) available at 
our tertiary referral institution. CT-simulation has been individually 
performed for each patient at the CT-simulator (GE Lightspeed RT, 
GE Healthcare, Chalfont St. Giles, UK) to acquire high quality RT 

planning images. Following the CT-simulation procedure, acquired 
RT planning images were sent to the delineation workstation 
(SimMD, GE, UK) by use of the network. Structure sets including 
treatment volumes and critical structures have been meticulously 
determined. Target volume definition was performed by either 
the CT-simulation images only or by registered CT and MR images. 
We conducted a comparative analysis for assessment of target 
definition by CT only and with incorporation of CT-MR registration-
based imaging to investigate the impact of multimodality imaging. 

Results
Patients referred for radiotherapeutic management of 

paraspinal Ewing sarcoma at the Department of Radiation 
Oncology, Gulhane Medical Faculty, University of Health Sciences 
have been studied for target volume determination by either 
CT-only imaging or by CT-MR registration-based imaging in this 
original study. Evaluated tumor related parameters included lesion 
size, localization and association with the spinal cord, extent of 
bony invasion, and other characteristics. Additionally, patient 
age, symptomatology, performance status, lesion location and 
association with other critical structures have also been assessed. 
We considered the reports by American Association of Physicists 
in Medicine (AAPM) and International Commission on Radiation 
Units and Measurements (ICRU) in precise RT planning. In view 
of contemporary guidelines and clinical experience, radiation 
physicists have generated plans by taking into account relevant 
critical organ dose constraints. Tissue heterogeneity, electron 
density, CT number and HU values in CT images have been 
considered by the radiation physicist in RT planning. A critical 
objective of RT planning included achieving optimal target volume 
coverage without violation of critical organ dose constraints. The 
definition of ground truth target volume has beeen accomplished 
by board certified radiation oncologists after thorough evaluation, 
colleague peer review, and consensus. Ground truth target volume 
has been used for actual treatment and for comparison purposes. 
Treatment delivery with Synergy (Elekta, UK) LINAC has been 
performed by incorporation of IGRT techniques including the 
kilovoltage cone beam CT and electronic digital portal imaging. 
Ground truth target volume has been found to be identical with CT-
MR registration-based imaging in this study for radiotherapeutic 
management of paraspinal Ewing sarcoma. 

Discussion
Ewing sarcoma has been initially described by James Ewing in 

1921 and may be defined as a high-grade osteolytic bone tumor 
which may occur at several localizations throughout the skeleton 
albeit with a tendency to involve the diaphysis of long bones [1-11]. 
Ewing sarcoma more frequently affects children and adolescents, 
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and improved therapeutic outcomes may be achieved through 
collaborative multidisciplinary management [3-11]. RT composes 
a critical weapon in the therapeutic armamentarium for treatment 
of Ewing sarcoma, and there have been several improvements in 
radiotherapeutic management lately [3-11]. Given that younger 
patients are more frequently diagnosed with Ewing sarcoma, 
thorough consideration of adverse effects is mandatory. RT offers a 
viable therapeutic option for a variety of cancers, however, pediatric 
patients should be more vigilantly considered for irradiation in 
given the risk of toxicity and consequences affecting quality of 
life. Younger patients still in the process of growing may be more 
prone to be negatively affected by adverse irradiation effects. Even 
so, RT may be utilized as part of multidisciplinary Ewing sarcoma 
management. Every effort should be made to avoid radiation 
induced toxicity in radiotherapeutic management of Ewing 
sarcoma. Exploitation of IGRT techniques, ART, and improved target 
definition are among the several considerations for contemporary 
radiotherapeutic management with an improved toxicity profile. 
Multimodality imaging techniques and image fusion methods 
have clearly contributed to improving target definition for several 
cancers, and there is now growing body of evidence suggesting the 
use of multimodality imaging for target definition of several tumors 
throughout the human body [12-45].

In the meantime, majority of cancer centers utilize CT simulation 
for RT planning for Ewing sarcoma. CT has been an effective imaging 
modality, however, incorporation of other imaging modalities such 
as MRI may result in improved target definition for radiotherapeutic 
management. In this study, we assessed RT target definition for 
Ewing sarcoma by use of multimodality imaging and found that 
target definition is improved by multimodality imaging. Within this 
context, this study may add to accumulating body of data suggesting 
improved target volume definition by use of multimodality 
imaging. Clearly, recent years have witnessed several advances in 
the spectrum of radiation oncology through the introduction of 
molecular imaging methods, automatic segmentation techniques, 
stereotactic RT, intensity modulated RT (IMRT), IGRT, and ART 
[46-84]. In line with these innovatory advances, accuracy and 
precision in target volume definition has been a more critical 
aspect of contemporary radiotherapeutic approaches. From this 
perspective, we consider that our study may have relevant clinical 
implications for routinization of multimodality imaging for target 
volume definition in radiotherapeutic management of paraspinal 
Ewing sarcoma. In conclusion, this study suggests improved target 
volume definition for radiotherapeutic management of paraspinal 
Ewing sarcoma by incorporation of MRI in RT planning procedure. 
Admittedly, there is need for further supporting evidence.
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