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Uguenenazole 6, has been synthesized in by refluxing a mixture of 4-methoxy 
phenacyl bromide 9 and benzamide 10 in chlorobenzene. It is proposed that initially 
formed uguenenamide 7 undergoes an acid catalyzed cyclization in situ to produce 6. 
The reported isolation of 6 and 7 from Vepris ugenensis Engl (Rutaceae) clearly shows 
that the biogenesis of 6 involves an intramolecular acid catalyzed cyclization of 7.
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Introduction  
The plant family Rutaceae is known to be a rich source of 

coumarins and alkaloids. Oxazole alkaloids with aryl substitution 
both at 2 and 5 positions isolated from few genera of Rutaceae 
family received a considerable attention from natural product 
chemists and synthetic organic chemists due to their simple 
structural features and amazing biological activities. Although 
several 2,5-diaryl substituted oxazoles have been isolated and 
characterized from marine sources, we limit ourselves with only 
a small group of naturally occurring compounds isolated from 
diverse plants belonging Rutaceae. Incidentally, annuloline 1, the 
first natural oxazole isolated and characterized in 1962 occurs in 
seedlings of the annual rye grass (Lolium multijorum) [1] while the 
other oxazole alkaloids, halfordinol and its derivatives 2a, 2b and 
2c [2-4], texalin 3 [5], balsoxin 4 [6], texamine 5 [7], uguenenazole  

 
6 and its precursor ugenenamide 7 [8] have been reported in 
plants belonging to family Rutaceae (Figure 1). Uguenenazole 6 and 
its precursor ugenenamide 7 happen to be the recently reported 
natural products from Rutaceae. This is the first report of isolation 
of a precursor and oxazole together from the same source.

Results and Discussion
Much before the isolation and characterization of 2,5-diaryl-1,3- 

oxazoles from rutaceous plants, a method for the synthesis of 
2,5-diaryl oxazoles was reported in view of their use as scintillators 
in medical diagnostics [9]. The natural plant oxazoles were found to 
exhibit various biological activities and due to this, oxazoles gained 
importance from synthetic organic chemists and those involved in 
medicinal chemistry. Moreover, it is observed that the more complex 
natural products which contain oxazole moiety exhibit several 
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biological activities [10] such as cytotoxic [11], antifungal [12], 
antibacterial [5], antitumor [13] and antiviral activities. In view of 
many research articles reporting the synthetic methodologies for 

2,5-diaryloxazoles, we have referred only those which are directly 
related to the naturally occurring 2,5-diaryl substituted oxazoles 1 
to 6 (Figure 1) and those which report their synthesis.

Figure 1: Naturally occurring 2,5-diaryl oxazoles and an amide from plant sources except 8 (synthetic).

Scheme 1: One-pot synthesis of uguenenazole 6. Reagents and conditions: 

1.	 Reflux in chlorobenzene. 

2.	 HBr (generated in situ).

A simple one pot synthesis of uguenenazole 6 is reported 
herein (Scheme 1). By refluxing commercially available 2-bromo-
4′-hydroxyacetophenone 9 and benzamide 10, in chlorobenzene for 
1 hr. uguenenazole 6 was obtained in 59% yield. Benzoic acid was 

also isolated in a small quantity. In order to explain the formation of 
6 under the conditions used, we believe that the in situ generated 
uguenenamide intermediate 7 undergoes an intramolecular acid 
catalyzed cyclization where HBr generated acts as a catalyst. 
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Formation of benzoic acid is a result of acidic hydrolysis of benzamide 
10 and/or of the intermediate uguenenamide 7. Comparison of 
the spectral data measured on synthetic uguenenazole with those 
recorded on the natural product established their identity beyond 
doubt. It may be noted that uguenenazole 6 has been synthesised 
twice before [14,15] as an application of newly developed 
methodologies for 2,5-diaryl-1,3-oxazoles.

Uguenenazole 6 and uguenenamide 7 have been isolated 
from the roots of Vepris ugenensis Engl. (Rutaceae). A plausible 
biosynthetic link has been proposed [8] and 6 and 7 have product–
precursor relationship. We have now demonstrated that the key 
step of the proposed pathway can be achieved using a simple 

single step process. A new question is to be answered what if 
ugenenamide 7 is the product then what is its precursor? A search 
and experimentation in this direction would answer this question. 
Cheplogi et al. [8] have reported EIMS of natural uguenenazole 6. 
We studied the mechanism of origin of the major fragment ions 
and the same is presented in Figure 2. 2,5-Diaryl-1,3-oxazoles 
have a great potential for the development of lead compounds in 
the search for the new drugs and medicines. One such molecule 
8 UA62784 (Figure 1) where 5-(4-methoxyphenyl)- substituent 
of uguenenazole 6 is retained and the substituent at 2 position 
is modified for the synthesis of a new lead molecule UA 62784 8 
(Figure 1) and being studied as an antitumor agent for the treatment 
of pancreatic cancer [13].

Figure 2: Mass fragmentation of uguenenazole for the fragments having intensity > 15%.

Experimental
One pot synthesis of  uguenenazole: In 25 mL R B Flask equipped 

with a magnetic stirrer, reflux condenser, 2g of p-methoxyphenacyl 
bromide(1eq) and 1.06g of benzamide(1eq), then added 4.9g of 
Chlorobenzene (5eq), the reaction mass was refluxed for 1.5hr, 
the reaction was monitored by TLC control system (Hexane: Ethyl 

aceatae-7:3). TLC shows a fluorescent spot on non-polar region. 
The reaction mass was concentrated under reduced pressure, 
then the residue was treated with 10 mL water, then extracted 
with 20mL ethyl acetate, the organic layer was washed with 10 
mL water, then dried over Na2SO4, then filtered off, concentrated. 
The crude product was purified by column chromatography using 
hexane–ethyl acetate system. (4%ethyl acetate in hexane). The 
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pure white product was isolated (1.3g, 59%, unoptimized). Melting 
point: 126-128oC. Mass analysis: 269.29(M+18) and 274.2 (M+ Na). 
1H NMR (400 MHz) (CDCl3) δ 8.12 (2H, dd, J=8.0,1.8 Hz), 7.88(1H, 
s), 7.50-7.40 (3H, m), 7.76(2H, d, J=9.0 Hz), 6.97 (2H, d, J=9.0 Hz), 
3.86 (3H,s); 13C NMR (100 MHz) (CDCl3):δ 161.60, 159.59, 141.7, 
128.7, 127.5, 126.9, 126.45, 123.84, 114.17, 55.36.

Conclusion
In conclusion, uguenenazole 6 was synthesized using 

4-methoxyphenacyl bromide 9 and benzamide 10 in one-pot 
reaction protocol. The two-component reaction mixture was 
refluxed using chlorobenzene as solvent. This operationally 
friendly and simple procedure has excellent scope for synthesis of 
other naturally occurring 2,5-diaryl-1,3-oxazoles and those having 
potential uses in synthetic and medicinal chemistry.
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Highlights
*Thermal reaction between 4-methoxyphenacyl bromide and 

benzamide.

*In situ generation of uguenenamide, the precursor of 
uguenenazole.

*One pot synthesis of uguenenazole by intramolecular acid 
catalyzed cyclization.
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