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Non-destructive screening of human or plant organs is necessary to diagnose 
the disease for its real-time and to-the-point treatment. Along with numerous oth-
er remotely sensed approaches, near-infrared spectroscopy (NIRS) has continued to 
facilitate the scientific community for disease diagnosis. The NIRS is being applied 
in numerous fields for diverse kinds of quality, quantity, and estimation studies. This 
mini-review focuses on some of the human and plant-related disease studies using 
the NIRS.

Introduction
Near-infrared spectroscopy (NIRS) lies in between visible and 

infrared spectroscopy and bears characteristics of both electronic 
and vibrational spectroscopy ranging from wavelength 800-2500 
nm. After the start of the systematic measurement of the NIRS in 
the 1920s [1], it got attention in the 1950s for investigation on 
anharmonicity [2], and in the 1960s an agricultural engineer (Karl 
Norris) explored the potential of NIRS for quality assessment 
of the agricultural products [3]. Since the 1980s, NIRS has been 
adopted as a precise and reliable approach for non-destructive 
studies of objects. After the development of computers, detectors, 
spectrometers and chemometrics. NIRS has been adopted 
by several industries (environmental analysis, biomedical 
sciences, agricultural sciences, cultural resources, petroleum, 
chemical, pharmaceutical and polymer industries). Moreover, 
NIR spectroscopy is growing substantially for brain science, 
paleocultural property science, forensic science, building site,  
safety sensing, astronomy, and security [4-6]. NIR spectrometers  

 
are comprised of a detector, spectrometer, and optical system for 
sample and light source (Figure 1). These are configured in two 
ways (Figure 1a & Figure 1b). (Figure 1a). the sample is placed after 
the spectrometer and irradiated by monochromatic light (Figure 
1b). the sample is irradiated with the light source and placed after 
it. The NIR light sources are different like Thermal radiation, light-
emitting diode, laser diode, supercontinuum light, and solid-state 
laser [7]. 

The use of these spectrometers to acquire data results in a huge 
bunch of datasets with redundant information relevant to the target 
problem because of the continuous number of light energy bands. 
Therefore, different feature selection and extraction approaches 
are adopted to diagnose the disease [8,9]. Numerous, machine 
learning techniques are used to extract sensitive information [10]. 
Herein, we will discuss the application of the NIR spectroscopy 
(hyperspectral images) for the investigation of human and plant.
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Figure 1: Configuration of NIR spectrometers.

NIRS for Human Diseases

NIRS has been used for disease diagnosis and image-based 
surgeries. The spectral characteristics of the NIR images provide 
the real-time biomarkers of deoxyhemoglobin and oxyhemoglobin 
[11]. NIRS has magnificent potential for disease quantification, 
estimation, diagnosis, screening, and detection because it can 
detect the [12-14]. Previously, numerous studies have employed 
NIRS for the examination of human diseases. Cancer disease has 
been studied comprehensively using NIRS for different organs 
of the body i.e. tongue [15], brain [16], skin [17], breast [18], 
colon [19], cervix [20], urothelium [21] and many other organs. 
The study detected enlarged angiogenesis which causes cancer 
[22]. The cervical epithelium was classified using fluorescence 
and reflectance spectroscopy [12]. In another finding, (Siddiqi, 
et al. [23]) successfully made the Pap test on cervical cells using 
hyperspectral images. (Wood, et al. [24]) used NIRS for squamous 
and glandular epithelium. (Hattery, et al. [25]) identified the blood 
volume with six thermal NIRS bands. The results indicated that 
spectral signatures of blood volume can be used to indicate tumour 
metabolism and tumour angiogenesis. The hyperspectral images 
of pathological slides ensured the detection of the head and neck 
cancer metastasis [26] and spectral data of the tongue was acquired 
non-destructively to examine the disease [15]. 

(Masood, et al. [27]) explored the NIRS images to classify the 
malignant and normal biopsy tissues, examining the geometrical, 
orientation, size, and shape traits of the cellular components. 
Similarly, a detailed study was conducted for colon cancer in 
which two modalities (hyperspectral images and fluorescence) 
of NIRS were fused to detect labeled antibodies. It was examined 
by mouse model in xenograft tissue in well precise manner, time, 

and cost-effectively [28]. Regarding circulatory and heart disease 
studies, fluorescence and reflectance spectroscopy was applied 
to diagnose atherosclerosis as fibrous plaque [29]. (Johnson, et 
al. [30]) diagnosed the human retina using hyperspectral images. 
(Yudovsky, et al. [31]) comprehensively reviewed that how NIRS 
can be employed for Diabetic foot. In nutshell, a numerous studies 
have employed and verified the NIRS for various human diseases. 

NIRS for Plant Diseases

The plants’ disease severely affects the biochemical properties 
of the plant leaves or any infected part. Therefore, multiple 
studies have considered and employed the NIRS for plant studies. 
Hyperspectral images are the most important ones which are vastly 
applied for plant disease. The reflectance pattern gets changed as 
shown in (Figure 2). Hyperspectral images have its roots in national 
aeronautics and space administration’s Jet Propulsion Laboratory 
with the development of the Airborne Imaging Spectrometer in 
the early 1980s [32]. HSI technology combines the science of 
spectroscopy with imaging to acquire both spectral and spatial 
information of an object or scene simultaneously [33]. Whereas, 
a push-broom type scanner has been used to inspect individual 
grapefruits for citrus canker [34] and in wheat for yellow rust disease 
[35]. A pixel-wise mapping of spectral reflectance in the NIRS range 
enabled the detection and detailed description of diseased tissue 
at the leaf level [36]. However, a pixel-wise attribution of disease-
specific symptoms and healthy tissue is conducive for observing 
spectral reflectance patterns of foliar diseases in detail. Some 
disease symptoms can only be distinguished from other diseases 
and stresses when NIRS with a high spatial resolution is used [37]. 
Therefore, feature extraction methods have been widely developed 
for monitoring several plant conditions. 
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Figure 2: Canopy reflectance pattern in NIR range.

Different attributes such as physical and morphological plant 
characteristics have been used for feature extraction which is 
obtained by NIRS. (Zhang, et al. [38]) demonstrated an application 
for leaf disease detection in cucumber plants. Initially, the application 
isolated the infected part of the leaf through k-means clustering 
while color and shape are extracted reaching an accuracy of 85.7%. 
Similarly, (Guo, et al. [39]) utilized texture and color features using 
a Bayesian approach for recognizing downy mildew, anthracnose, 
powdery, and gray mold infection with respective accuracy rates 
of 94.0%, 86.7%, 88.8%, and 84.4%. However, (Vianna, et al. [40]) 
developed a neural network based pattern recognition approach 
for detecting the globally dominant tomato late blight disease.

Conclusion
A very disease-specific introduction and review of NIRS for 

plant and human diseases elucidate the successful application 
for diagnosis. The biochemical changes in the infected parts give 
detectable signals to the detector and make successful use of it. 
However, concise and comprehensive efforts still needed to be 
made for the large-scale use of this technology in the special context 
of the cost and availability for developing countries.
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