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The neurodegenerative Parkinson’s disease, associated with dopamine deficient neu-
rons in the basal ganglia, has defied medical attempts to stop disease progression. 
Light therapy applied either directly to the brain or indirectly via its effect on the gut 
microbiome, offers a potential novel treatment approach which both protects healthy 
neurons and rescues damaged ones. As well as aiding symptomatic relief light therapy 
either alone or as an adjunct, may stop progression to dementia and early death. 
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Introduction
Parkinson’s disease is a movement disorder resulting from the 

loss of dopaminergic neurons of the midbrain. This causes resting 
tremor, akinesia and rigidity often associated with cognitive decline 
and early death. The current medical treatment with L-Dopa is 
very effective in attenuating the motor signs, at least initially but 
eventually neurosurgery can be needed with implantation of 
electrodes and deep brain stimulation. These treatments however 
do not reliably alter the slow progression of the disease and 
neurons continue to die. Despite an intense search for the specific 
cause of this neurodegenerative disease there is also a need to 
look towards developing an approach that will regulate the self 
repair mechanisms of neurons. This will potentially alleviate, or 
at least slow, the progression of Parkinson’s and perhaps other 
neurodegenerative disease. Red to infrared light therapy (600-1070 
wavelength) is emerging as an effective, repair orientated therapy 
that may be capable of regulating specific neuronal functions, as well 
as being neuroprotective and stabilising dying neurons (Johnstone, 
et al. [1]). In Parkinson’s disease light therapy can be applied 
directly or indirectly to the substantia nigra pars compacta (SNc) 
of the midbrain. More recently there have been anecdotal reports  

 
of the benefits of light therapy by its affect on the gut microbiome 
(“photobiomodulation”) via the vagus nerve (Liebert, 2019).

Parkinson’s Disease
Parkinson’s disease is a slow, progressive neurodegenerative 

disease of insidious onset causing resting tremor, rigidity, akinesia 
and bradykinesia (Jancovic, et al. [2]). This is due to loss of 
pigmented dopaminergic neurons in the SNc and other nuclei of 
the basal ganglia causing abnormal neuronal activity (Blandini, 
et al. [3]). In a small number of cases defective genes contribute 
to the development of Parkinson’s disease. It may also be caused 
by exposure to a neurotoxin occurring many years prior to the 
onset of clinical signs (Bove, et al. [4]). Mitochondrial dysfunction 
however plays the central role underpinning the degeneration of 
dopaminergic neurons, whether by toxic insult or genetic defect, 
with progressive accumulation of mutations in mitochondrial DNA 
(Exner, et al. [5]). Neurodegeneration leads to the accumulation of 
abnormal proteins (Lewy bodies) within the neurons (Goedert, et al. 
[6]) together with glutamate excitotoxicity and local inflammation 
in the SNc (Whitton, et al. [7]). 
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Management of Parkinson’s Disease

Current treatment for most patients is replacement dopamine 
drug therapy. In some patients surgery is needed to correct the 
abnormal function of the basal ganglia circuitry caused by the loss 
of dopamine. This occurs when medication becomes ineffective 
or with progressive disease where further symptomatic relief 
is needed. Three types of drug therapy are used to enhance 
the defective dopamine pathway (Shapira, et al. [8]). First line 
treatment is usually L-Dopa (levodopa), a precursor to dopamine, 
which quickly reduces the motor signs but its efficacy reduces over 
time. Within several years involuntary movements (dyskinesia) 
appear, especially in the upper limbs, due to dysregulation of the 
dopaminergic receptors. Second line drug therapy uses dopamine 
agonists which mimic the action of dopamine and activate the 
dopamine receptors of neurons directly. These have fewer motor 
complications and are often the treatment choice in younger 
patients.

The final group of drugs are monoamine oxidase inhibitors 
which help to stop the breakdown of dopamine at the synapse, 
thereby increasing availability to the postsynaptic neurons (Worth, 
2013). Drug treatments give early good symptomatic relief but there 
is little evidence they are neuroprotective, and they do not slow the 
pathology of the disease or stop neuronal death (Hart, et al. [9]). 
Surgical treatment is reserved after drug treatments fail to relieve 
symptoms and dyskinesia develops. The basic surgical principle is 
to target and correct the abnormal motor activity of basal ganglia 
nuclei and thalamus due to reduction of dopamine levels. The nuclei 
targeted are usually the motor nuclei of the thalamus, the globus 
pallidus and the subthalamic nucleus with the aim of reducing 
tremor, akinesia and rigidity. Initial surgical efforts were directed 
at destructive lesions but more recently deep brain stimulation 
using implanted electrodes at high frequency is used to dampen the 
abnormal activity in these nuclei (Ashkan, et al. [10]). This has low 
morbidity with effective long term management of motor signs but 
little evidence of slowing of the pathological process (Charles, et al. 
[11]) and prevention of neuronal death (Wallace, et al. [12]).

Neuroprotection Using Light Therapy

There is both basic science and clinical evidence for 
neuroprotection in Parkinson’s disease by light therapy using 
low level laser red to infrared light of 600-1,070nm. The process 
may have evolved in epithelial tissues and remain inducible in the 
neuroepithelium. This common mechanism is suggested by light 
therapy success in many different models of disease in a range of 
neural systems such as depression (Schiffer, et al. [13]) and age 
related macular degeneration (Rojas, et al. [14]). The mechanisms 
involved are not entirely clear but the most compelling evidence 
suggests direct stimulation of the mitochondria boosting their 
function via an increase in ATP production (Rojas, et al. [14]). This 

primary mechanism is supported by the indirect stimulation of the 
immune system and stem cells (Byrnes, 2005). These stimulated 
cells may release trophic factors such as nerve growth factor and 
vascular endothelial growth factor that improve the function of 
dying cells with a reduction in apoptosis (Hou, et al. [15]). There 
have been promising experimental results in animal models 
indicating that light therapy both protects healthy neurons and 
also rescues damaged neurons by increasing ATP levels (Peoples, et 
al. [16]). Neuroprotection studies show far better outcomes when 
therapy is started earlier in the disease process with less prior 
neuronal degeneration (Ashkan, et al. [17]). Light therapy also 
appears to restore function to salvaged neurons (Shaw, et al. [18]) 
but it is not clear how much light is required and how it should 
be administered to achieve neuronal survival (Rojas, 2017). Light 
applied in bursts may be more effective in short pulses rather than 
being applied continuously (Oron, et al. [19]).

Human Studies

Despite promising experimental results in animal models there 
have been no major clinical trials of light therapy in patients with 
Parkinson’s disease, only anecdotal reports and non randomised 
studies (Maloney, et al. [20]). An obvious problem is delivery of 
light applied from an external source to deeper brain structures in 
humans. Attempts are currently underway to develop an intracranial 
light optical fibre device to deliver a strong light signal deep into the 
brain near the SNc (Johnstone, et al. [21]). Clearly there are many 
advantages in using light therapy for Parkinson’s disease, especially 
its potential to be neuroprotective. Also, it appears to be free of 
any side effects with a large safety margin (Mc Carthy, et al. [22]). 
Treatment with light therapy is also relatively uncomplicated. The 
patient would require a minimally invasive surgical stereotactic 
procedure for the insertion of a light optical device into the brain 
linked to a pacemaker and battery. (McGeer PL, et al. [23]). The light 
is applied to the SNc as required, similar to single electrode deep 
brain stimulation currently being used with comparable procedural 
risks (Benabid, et al. [24]).

The Gut Microbiome and Parkinson’s Disease

There is a particularly strong link between the microbiome and 
Parkinson’s disease. Constipation affects over 90 per cent of patients 
with Parkinson’s disease often preceding the diagnosis by many 
years (Perez-Pardoa, et al. [25]). The disease is also more common 
in those who have irritable bowel disease (Jankovic, et al. [26]) and 
the gut microbiome in Parkinson’s patients has been shown to be 
altered compared to the general population (Parashar, et al. [27]). 
The current hypothesis suggests that local inflammation in the gut 
excites an inflammatory response with increased production and 
excess accumulation of a protein, alpha synuclein. Some of this 
excess may be transported to the brain via the vagus nerve (Bravo, 
et al. [28]). Abnormal accumulation of this protein in nerve cells 
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produce Lewy bodies which are present in high numbers in the 
brain of patients with Parkinson’s disease and have been detected 
in the gastrointestinal tract of these patients many years prior to 
their diagnosis (Derkinderen, et al. [29]).

The vagus nerve begins from a number of nuclei in the lower 
brain stem and supplies the gastrointestinal tract down to the 
first half of the large intestine. Patients who have undergone 
surgical transaction of the vagus are known to be less likely to 
develop Parkinson’s disease (Klingelhoefer, et al. [30]). Direct 
communication between the microbiome and the brain is 
theoretically possible through the vagus nerve which provides a 
direct link to the enteric, or autonomic, nervous system (Pavlov, et 
al. [31]). The latter communicates directly with the gut lumen and 
is exposed to microbially produced neurotransmitters (Bravo, et al. 
[28]). Endocrine cells in the gastrointestinal tract have been shown 
to synapse with the vagus nerve and transmit signals directly from 
the gut to the brain in a single synapse (Kaelberer, et al. [32]). The 
vagus nerve can influence gut motility and mucin secretion both of 
which will affect the microbiome (Mayer, et al. [33]). As well short 
chain fatty acids produced by the microbiome can directly influence 
the sympathetic nervous system (Kimura, et al. [34]).

Improvement in the gut microbiome may reduce gastrointestinal 
tract inflammation and permeability which should reduce alpha 
synuclein production and transportation to the brain (Sherwin, 
et al. [35,36]). Theoretically the risk of Parkinson’s disease is 
also reduced by the anticipated increase in beneficial microbial 
metabolic by-products including serotonin, gamma amino butyric 
acid and dopamine (Sun, et al. [37]), and symptoms should improve 
in those who already have the disease. A recent study (Bicknell, et 
al. [38]) has shown that infrared light delivered as low level laser 
to the abdomen of healthy mice can produce a significant change 
in the gut microbiome. It is uncertain whether the light is primarily 
absorbed by the microbial cells themselves or by the host cells 
surrounding the microbes or a combination of both. (Willis GL, et 
al. [39]). The alteration in the microbiome may also be a secondary 
effect of light affecting the mouse inflammatory response (Hamblin, 
et al. [40]). A series of experiments on Parkinson’s disease in a 
mouse model has shown neuroprotection can also be achieved by 
infrared light delivered to areas of the body remote from the brain 
(Sampson, et al. [41]). This is postulated to be due to activation 
of stem and immune cells or a mediator linked to changes in the 
microbiome (Kim, et al. [42]).

There have been anecdotal reports of improvements in 
the symptoms of Parkinson’s disease patients including gait 
disturbance, balance, cognition issues and fine motor skills after 
receiving infra red light therapy to the abdomen (Bicknell, et al. 
[2]). These patients showed changes in their gut microbiome with 
a decrease in some genera of microorganisms that are increased in 

Parkinsonian patients, and an increase in others that are deficient 
in these patients (Parashar, et al. [27]) & Liebert, et al. [49]). One of 
these deficient bacteria (prevotella) is so strongly associated with a 
more severe form of Parkinson’s disease that it has been proposed 
as a biomarker for the disease Liebert, et al. [49]). (Imhann F, et al. 
[43]). The bacteroids in the gut that increased with light therapy 
are considered beneficial to the microbiome through their anti-
inflammatory properties and production of healthy short chain 
fatty acids (Inhann, et al. [43]). Light therapy potentially could act as 
an adjunct to traditional treatments to rebalance the microbiome, 
especially dopamine and neurotransmitter production, (Johnstone, 
et al. [44]) and positively affect the outcome of some difficult to 
treat patients with Parkinson’s disease (Jenkins, et al. [45-48]).

Conclusion
The discussion of the possible mechanism of action of the 

effect of light therapy on the human brain either directly or via 
the microbiome is highly speculative and in its infancy. Early 
experimental results in animal models however have shown promise 
that light therapy both protects healthy neurons as well as rescuing 
damaged dopaminergic neurons. Anecdotal human studies suggest 
a beneficial neuroprotective outcome of photobiomodulation 
in patients with neurodegenerative disease. Obviously further 
research is needed but it is also clear that red to infra red light 
therapy has the potential to develop into a viable treatment option, 
or at least an adjunct, for patients with Parkinson’s disease. It 
offers the potential of neuroprotection and prevention of disease 
progression to cognitive decline and early death.
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