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The rapidly spreading Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) has inflicted numerous patients and deaths in human inhabiting city-states 
worldwide. Due to its zoonotic nature, not only humans are susceptible to the re-
cent threat. Non-human wildlife such as white-tailed deer (Odocoileus virginianus), 
the Père David’s deer (Elaphurus davidianus), and the typical roe deer (Capreolus 
capreolus) are all highly susceptible to SARS-CoV-2 due to the virus targeting high-
ly conserved genes such as host angiotensin-converting enzyme 2 (ACE-2) receptors. 
While the virus was vastly spreading globally within human patients, wildlife was also 
contacted via viral residue discarded in local cities or direct contact with infected pa-
tients. The current situation of cervids and capreolus species are reported to be in-
flicted by SARS-CoV-2 vastly throughout multiple countries. The ability to contain the 
coronavirus and act as both a reservoir and a method to successfully transmission the 
virus vertically to future generations will indefinitely enable SARS-CoV-2 to develop 
novel mutations and in turn unleash another possible zoonotic outbreak. 
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Introduction 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is a positive sense single-stranded RNA virus that constantly 
threatens the public health [1]. After the initial identification, the 
pandemic had spread to regions far across its originated continent 
claiming more than 5.9 million deaths and infecting more than 
433 million people around the world [2]. The infection alone did 
not lead the virus as a global threat. The ability to transform into 
multiple subtype variants due to its RNA nature made governments 
and health care departments more challenging to successfully 
identify and cure infected patients. While the current state of 
SARS-CoV-2 is a major concern, the event of its emergence is also 
important because the transmission itself was zoonotic. SARS-
CoV-2 is categorized within the severe acute respiratory syndrome 
related Coronavirus (SARSr-CoV) of the family Coronaviridae 
[3]. In attempts to discover which animal started the infection, 
reports indicated a genome sequence of one of the SARr-CoV which  

 
resembled 96% of the whole RaTG13 gene within SARS-CoV-2 [4]. 
The report suggested hard evidence of viral genome sequences 
from bats were the origin of the initial infection. Since the report 
was released, several other bat viral genome sequences related 
to SARS-CoV-2 have been sighted from different regions in China 
and Japan [5-8]. Considering previous reports, it may have been 
inevitable of cross-infection of the SARS-CoV-2 virus from non-
human mammals. As the infection continue among the human 
population, other mammals were also in the risk of exposure by 
any contacts with human patients. SARS-CoV-2 targets the host 
angiotensin-converting enzyme 2 (ACE-2) receptor to tether cells 
[9]. Interestingly, ACE-2 receptor are highly conserved genes which 
are observed in various animal species [10]. As a result, various 
incidents regarding dogs, cats, zoo animals, and even farmed 
minks were documented as a SARS-CoV-2 infection [11-14]. While 
domestic and industrial mammals were the first to be infected 
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due to numerous human contacts, the continuous widespread has 
led to further spillovers regarding local wildlife [15]. Among the 
indigenous wildlife, capreolus and cervid species were reported 
to be highly susceptible to SARS-CoV-2, especially white-tailed 
deer (Odocoileus virginianus), the Père David’s deer (Elaphurus 
davidianus), and the typical roe deer (Capreolus capreolus) [16]. 
This review is to aim on the current SARS-CoV-2 situation in wild 
capreolus and cervid species and the potential zoonotic backlash it 
will bring to human public health care.

Methods of Transmission from Human to Wildlife
When compared to local domestic and industrial animals, 

wildlife located far from suburbs are considered less hazardous 
to confront direct SARS-CoV-2 infection. However, reports suggest 
a high possibility that infected patients shed SARS-CoV-2 within 
feces [17]. Recent research on other Coronavirus subtypes such 
as Middle East Respiratory Syndrome (MERS) report detection 
rates of 14.6% and 2.4% within fecal and urine samples [18]. The 
predecessor SARS-CoV inflicted patients experienced diarrhea and 
SARS-CoV RNA was detected within the stool samples and small 
intestines [19]. The SARS-CoV virus was able to remain contact 
and fully functional in diarrheal samples for a maximum 4 days 
at room temperature [20]. Similar to its former subtypes, a recent 
report discovered a U. S. patient infected with SARS-CoV-2 shed 
SARS-CoV-2 RNA in their feces [21]. More than 50% 96 patients’ 

feces samples collected over 31 days detected SARS-CoV-2 [22]. 
The research proves that a portion of the infected patients are able 
to shed SARS-CoV-2 virus via diarrheal feces. The disposed virus 
derived from populated suburbs, hospitals, and airports will be 
transported to various sewage systems. Mistreated water has the 
potential to carry SARS-CoV-2 RNA and act as a potential vehicle to 
expose the virus directly to the natural aquatic environment [23-
25]. Coronavirus has been known to lose its initial infectivity when 
exposed in water due to its lipid envelope structure [26]. However, 
depending on the viral subtype and condition of the water such as 
temperature, Human derived Coronavirus are known to survive 
more than 500 days [27]. This provides ample time for wandering 
roe deer and other cervids to be contacted by the virus and be 
infected via the gastrointestinal organs. The other major method 
of a spillover would be due to seasonal hunting. Studies regarding 
retropharyngeal lymph node samples of wild deer discovered a 
sharp increase in positive SARS-CoV-2 RNA signatures when the 
hunting season started on September 19, 2020, until January 10, 
2021 [28]. The study in Iowa suggests major influx of people during 
the hunting season left various SARS-CoV-2 containing residue 
infecting the Southeastern area (Figure 1) Suresh V. Kuchipudi, et al. 
[28]. The virus contacted deer acted as a viral reservoir to actively 
spread to other regions, gradually infecting in all directions. This 
state limited situation later developed to regional crossing inflicting 
SARS-CoV-2 infection in other states.

Figure 1: Epidemic curve showing SARS-CoV-2 weekly cases (per 100,000) in humans and the monthly change in SARS-CoV-2 
positivity in White-tailed deer in Iowa. Adapted from Multiple spillovers and onward transmission of SARS-Cov-2 in free-living 
and captive White-tailed deer (Odocoileus virginianus) by Suresh V. Kuchipudi, 2022, Proc Natl Acad Sci 119(6).
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Current State of Capreolus and Cervid Species 
Infection

While SARS-CoV-2 was widespread in major human populated 
regions, SARS-CoV-2 wildlife dissemination were not yet sighted. 
The trend of the viral infection tends to have a gap of one year in 
the viral progression. As of today, situation of SARS-CoV-2 infecting 
various cervid and capreolus species is spotted in almost every 
continent. Vast samples of deer originating from different countries 
in North America such as Ohio and Maryland in the United States and 
Canada have detected SARS-CoV-2 RNA [29]. SARS-CoV-2 detection 
efforts are also increased in Eurasian countries such as northern 
Fennoscandia, Iceland, and Eastern Russia [30]. Compared to the 
western regions, reports regarding cervid and capreolus species 
inhabiting eastern countries are relatively short. Main reports 
are focused on the direct culprit which started the viral outbreak. 
Japan, China, and Singapore reported positive identification of the 
same SARS-CoV-2 strand containing bats. This strongly predicts 
there will be high chance of local deer or other capreolus species 
exposed to SARS-CoV-2 residue and naturally be infected.

Viral Characteristics and Variants among the 
Infected Cervid Species

SARS-CoV-2 drastically developed within the human patients 
by transforming through a series of mutations later discovered 
as novel variants of the original virus. Within 2019 to 2022, 
major SNP mutations named as Alpha, Beta, Gamma, Delta, and 

the latest Omicron variant quickly spread to heavily populated 
human settlements. Similarly, local wildlife has also contacted the 
gradually mutating virus. It is crucial for both the infected deer 
and human patient to be identified which subtype of SARS-CoV-2 
as every variant mostly contains variant specific point mutations. 
For example, the previous alpha variant was identified as a novel 
variant due to mutations such as N501Y, D614G, and P681H. This 
enabled the mutated spike proteins of SARS-CoV-2 to improve 
its ability to bind cellular receptors of host cells [31]. The more 
recent variant Delta and Omicron contained more unique point 
mutations such as the T478K, P681R, and K417N mutation in Delta 
and E484D, P812R, and Q954H in Omicron variants [32,33]. While 
the alpha and other previously found variants are hindering within 
the human population, wild deer and other capreolus species 
are in the relatively early stages of dissemination. What is more 
concerning with the infected deer is that not only does the animals 
act as a suitable reservoir for SARS-CoV-2, but also the ability to 
transmission the virus from doe to fetus. Recent reports suggest 
adult white-tailed deer can transmit the Alpha variant of SARS-
CoV-2 vertically [34]. The virus’s ability of vertical transmission in 
utero have been documented in human pregnant patients [35], but 
the ability of other wildlife mammals to pass on previous variants 
will indefinitely influence future SARS-CoV-2 development. 
Infected cervids will contain the virus through generations and 
may eventually harbor novel mutations that will in turn trigger yet 
another zoonosis to unsuspecting humans (Figure 2).

Figure 2: Schematics of SARS-CoV-2 zoonosis and pathways of cervid infection leading to potential reverse zoonosis.
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Conclusion
Studies regarding the current spread of SARS-CoV-2 infection 

in wild cervid or capreolus species are yet to be finished. Further 
sequencing and observation will be required to successfully 
document how far wildlife have been exposed to the zoonotic 
virus that may prevent another, perhaps more serious outbreak of 
reverse zoonosis.
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