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We study the properties of the called log-generalized gamma Burr III distribution 
defined by the logarithm of the generalized gamma Burr III random variable (Olo-
batuyi, et al. [1]). An advantage of the new distribution is that it includes as special 
sub-models classical distributions reported and has the ability to model unimodal 
HFs. We obtain formal expressions for the moments, moment generating function, 
quantile function and mean and median deviations. We constructed a regression mod-
el based on the new distribution to predict relief time of headache patients and death 
of breast cancer patients treated by mastectomy. It can be applied to censored data 
since it represents a parametric family of models that includes as special sub-models 
several widely known regression models. The regression model was fitted to a data set 
of 1207 eligible breast cancer patients. We predict survival probability after the mas-
tectomy in terms of highly significant clinical and pathological explanatory variables 
associated with the death of the patients. The predicted probabilities of survival are 
calculated under two nested models.

Keywords: Generalized Gamma Burr III Distribution; Censored Data; Log- General-
ized Gamma Burr III Distribution; Log- Generalized Gamma Burr III Regression Model; 
Survival Function

Introduction
Standard lifetime distributions usually present very strong 

restrictions to produce bathtub curves, and thus appear to be in-
appropriate for interpreting data with this characteristic. Some 
distributions were introduced to model this kind of data, as the ex-
ponential power family [2], the beta integrated model [3], and the 
generalized log-gamma distribution, among others. A good review 
of these models is described, for instance, in [4] In the last decade, 
new classes of distributions for modeling this type of data based 
on extensions of the Weibull distribution were developed. For ex- 

 
ample, the exponentiated Weibull (EW) (Mudholkar, et al. [5]), the 
additive Weibull [6], the modified Weibull (Lai, et al. [7]), the beta 
Weibull (BW) (Famoye, et al. [8,9]) and the generalized modified 
Weibull (Carrasco, et al. [10]) distributions. Further, (Carrasco, et 
al. [10]) investigated several mathematical properties of the BW 
geometric distribution, which is a highly flexible lifetime model to 
cope with different degrees of kurtosis and asymmetry. The Gener-
alized Gamma Burr III (GGBIII) distribution, due to its flexibility in 
accommodating the different types of the risk function depending 
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on its parameters, can be used in a variety of problems in modeling 
survival data. The main motivation for the use of the GGBIII model 
is that it contains as special sub-models several distributions such 
as the generalized gamma Fisk, Zografos and Balakrishnan-Burr III, 
Zografos and Balakrishnan-Fisk, Burr III distribution among oth-
ers. Also, it was reported that gamma model is the most effective 
model for analyzing highly skewed data such as survival data, [11].

Breast cancer presents a major risk to American women, who 
have a 1 in 8 lifetime chance of developing the disease. The esti-
mated incidence of invasive breast cancer in the United States for 
2010 was 207,090 women, making it the most common cancer af-
ter skin cancer in women. Although survival has improved because 
of advances in treatment and early diagnoses as a result of the in-
creased use of mammographic screening, fatalities in 2010 have 
been put at 40,000. Mastectomy is surgery that removes the entire 
breast. All the breast tissue is removed, sometimes along with other 
nearby tissues. If just the breast is removed (and not lymph nodes 
under the arm) it is called a simple (or total) mastectomy. A sim-
ple mastectomy combined with an axillary lymph node dissection 
(discussed below) is called a modified radical mastectomy. The pri-
mary end point was survival (DFS), defined as time to the earliest 
of either death (all-cause), or last follow-up. The follow-up period 
was defined as time to the earliest of either death (all-cause), or last 
follow-up. For the first time, we propose a log-generalized gamma 
Burr III regression model to predict the 𝑡 months survival proba-
bility after mastectomy in terms of highly significant clinical and 
pathological variables associated with death of the patient after 
surgery. The study cohort comprises 1207 patients with clinical-
ly localized cancer treated by mastectomy. The data consist of the 
random response variable given by the number of months (𝑦𝑖) after 
mastectomy. Uncensored observations correspond to patients hav-
ing death time computed. Censored observations correspond to pa-
tients who were not observed to have died at the time the data were 
collected. The numbers of censored and uncensored observations 
are 1135 and 72, respectively, of the total of 1207 patients.

In this article, we propose a location-scale regression model 
based on the LGGBIII distribution, referred to as the LGGBIII re-
gression model, which is a feasible alternative for modeling the ex-
isting types of failure rate functions. Some inferential issues were 
carried out using the asymptotic distribution of the maximum like-
lihood estimators (MLEs). The sections are organized as follows. In 
Section 2, we define the LGGBIII distribution. Mathematical prop-
erties of this distribution are investigated in Section 3. In Section 
4, we obtain the order statistics. We propose a LGGBIII regression 

model for censored data and discuss inferential issues in Section 5. 
In Section 6, a breast cancer data set is analyzed to show the flexi-
bility, practical relevance and applicability of our regression model. 
Section 7 ends with some concluding remarks.

Generalized Gamma Burr III Distribution

Most generalized Burr III distributions such as Beta Burr III 
distribution Antonio and Silva (2014) have been proposed in re-
liability literature to provide better fitting of certain data sets than 
the traditional two and three parameter Burr III models. The GGBIII 
density function (Olobatuyi, et al. [1]) with five parameters 𝛼 > 0, 𝛽 
> 0, 𝛿 > 0, 𝑘 > 0 and 𝜆 > 0 is given by (𝑡 > 0)
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where Γ(. ) is a gamma function. Here, α and k are two addi-
tional shape parameters to the Burr III distribution to model the 
skewness and kurtosis of the data. The important characteristic of 
the GGBIII distribution is that it contains as special sub-models. The 
hazard and survival rate functions corresponding to (1) are
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(3)

Shape of GGBIII Distribution

Plots of the density function of the Generalized Gamma Burr 
III distribution for selected parameters values are given in Figure 
1. The plot indicates that the GGBIII distribution can be decreasing 
or right skewed.
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Figure 1: Shape of GGBIII distribution for selected parameters.

The Log-Generalized Gamma Burr III Distribution

In this section, log-generalized gamma Burr III distribution is 
introduced. It is based on the logarithm of the continuous GGBIII 
distribution that is presented above. The log-generalized gamma 
Burr III distribution is proposed and denoted as LGGBIII. Some of 
its mathematical properties are studied, estimation by the method 
of maximum likelihood is discussed, and applications to two real 
datasets are described. The new distribution is shown to outper-
form at least two models which are the log-ZBD and Cox model. Let 
𝑇 be a  random variable having the GGBIII density function (1), The 
random variable 𝑌 = log(𝑇)  has a log-generalized gamma-Burr II(L-
GGBIII) distribution, whose density function is reparametrized in 

terms of 

1δ
σ

=
and 𝜇 = log 𝜆  can be expressed as
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Where − ∞ < 𝑦 <  ∞, 𝜎 > 0, and −∞ < 𝜇 < ∞ ,   𝑝 > 0, 𝛼 > 0, 𝛽 > 
0. We refer to the new model (4) as the LGGBIII distribution, say 
𝐿𝐺𝐺𝐵𝐼𝐼𝐼(𝛼, 𝛽, 𝑝, 𝜇, 𝜎    ) where 𝜇  is a  location parameter, 𝜎  is a  disper-
sion parameter and 𝛼,  𝛽 and 𝑘  are shape parameters. The following 
results hold if 𝑇 ∼ 𝐺𝐺𝐵𝐼𝐼𝐼(𝛼, 𝛽, 𝑝, 𝛿,     𝜆) then 𝑌 = 𝑙𝑜𝑔(𝑇)  ∼ 𝐿𝐺𝐺𝐵𝐼𝐼𝐼(𝛼, 
𝛽, 𝑝, 𝜇, 𝜎   ). The standard random variable 𝑍 = 𝑌 − 𝜇 ⁄𝜎 with density 
function is defined as
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The special case of the model lead to a standard log-ZBD (LZBD 
new) distribution for 𝑝 = 1. For 𝛽 = 𝑝 = 1, we obtain the log-Zografos 
and Balakrishnana Fisk (LZB-F new). The survival functions corre-
sponding to (4) and (5) are
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Expansions of Density Functions

If a random variable 𝑍 has the LGGBIII density, we say 
𝑍~𝐿𝐺𝐺𝐵𝐼𝐼𝐼(𝛼, 𝛽, 𝑘  ). Let 𝑢 = (1 + 𝑒−𝑧)−𝛽,  and then using the series 
representation from Gradshteyn and Ryzhik (2000).
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and applying the result on the power series raised to a positive 
integer, with 𝑐𝑠 = (𝑠 + 2)−1, that is,
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Shape of LGGBIII Distribution Function

The plot (4) in Figure 1 for selected parameter values show 
great flexibility of the density function in terms of the parameters 
α, β, 𝑝 in Figure 2a β  = 3, 𝑝 = 2 and in Figure 1b, α = 2.5, 𝑝  = 2 and in 
Figure 1d, α = 2.5, β = 3.

Figure 2: Plots of the LGGBIII density for some parameter values, (a), and (b), for constant mu and sigma.

LGGBIII Quantile Function

We now give an expansion for the quantile function 𝑞 = 𝐹−1(𝑘) 
(given k) of the LGGBIII distribution. First, we have k = F(q). It is 
possible to obtain as function of p from some expansions for the 
inverse of the gamma incomplete function 𝑄𝐺𝐺𝐵𝐼𝐼𝐼(𝑞)  = 𝑘,  0 < 𝑞 < 1.
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Let [− log[1 − (1 + 𝑒−𝑞)−𝛽 ]𝑝 then,
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1/1 (1 (1 ]u p qe e β− − −− = = +
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1/ 1/log[(1 ) 1]u pq e β− −= − − −  (15)

Moments, Moment Generating Function Mean and Median De-
viations

In this section, we present the moments, moment generating 
function, mean and median deviations for the GGBIII distribution.
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Moments and Moment Generating Function

As with any other distribution, many of the interesting char-
acteristics and features of the LGGBIII distribution can be studied 
through the moments. Let 𝛽∗ = 𝛽(𝑝𝛼 + 𝑗 + 𝑠 + 𝑖), and 𝑋~ 𝐿𝐵𝐼𝐼𝐼(𝜇, 𝜎, 
𝛽∗). Then the 𝑟𝑡ℎ  moment of the random variable 𝑌 is
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Mean and Median Deviations

Mean Deviation: If Y has the LGGBIII distribution, we derive 
the mean deviation about the mean 𝜇 by

1 0 | | ( ) 2 ( ) 2 2 ( ),LGGBIIIy gGD y dy G Tδ µ µ µ µ µ∞= ∫ − = − + 	  (36)

Where 𝜇 = 𝐸(𝑌)  and T

*( ) ( ) . ( ),T y gLGGBIII y dy Let p j s iµµ β β α∞= ∫ ⋅ = + + +  than 

 

*( ) ( , , )( )LBIII
veC

T vTµ ϕ β µ σ µ=∑
 (37)

* * *exp( )[ ( ,1 ) ( ( ) ,1 )]v
veC

B B tϕ β µ β σ σ µ β σ σ= + − − + −∑
 
(38)

* *
1

( log(1 (1 exp( )) )], )
2 exp( )[ ( ,1 )] 1

( )v
veC

y

B
βµγ α

σδ ϕ β µ β σ σ
α

−− − − − 
= + − − Γ 

 

∑

* * *2 exp( )[ ( ,1 ) ( ( ); ,1 )]v
veC

B B tϕ β µ β σ σ µ β σ σ+ + − − + −∑

* *
1

( log(1 (1 exp( )) )] , )2 exp( )[ ( ,1 )] 1
( )

p

v
veC

zB
βγ αδ ϕ β µ β σ σ

α

− − − + −
= + + − − Γ 

∑
 
(39)

Where 
1( ) (1 exp( ))t zµ −= + − and 

1 1

0

( ; , ) (1 )
y

a bB Y A B t t dt− −= −∫

Median Deviation: If 𝑌 has the LGGBIII distribution, we de-
rive the median deviation about the median 𝑀 by
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υε
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(43)

Order Statistics of LGGBIII Distribution

Order statistics make their appearance in many areas of statis-
tical theory and practice. The density f i:n( x) of the ith order statistic 
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(𝑍𝑖:𝑛) for 𝑖 = 1, . . . , 𝑛      from i.i.d. LGGBIII random variables 𝑍 1, . . . , 𝑍𝑛 
is simply given by
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;
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where 𝑓(𝑧; (𝛼(𝑖 + 𝑗) + 𝑙), 𝑝, 𝛽  , ) is the LGGBIII pdf with parame-
ters 𝛽,  𝑝 and shape parameter 𝛼 ∗ = 𝛼(𝑖 +  𝑗) + 𝑙.
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The Log-Generalized Gamma Burr III Regression Model

In many practical applications, the lifetimes are affected by ex-
planatory variables such as the cholesterol level, blood pressure, 
weight and many others. Parametric regression models to estimate 
univariate survival functions for censored data regression problems 
are widely used. A parametric model that provides a good fit to life-
time data tends to yield more precise estimates of the quantities of 
interest. Based on the LGGBIII density function, we propose a lin-
ear location-scale regression model linking the response variable 
𝑦𝑖 and the explanatory variable vector 𝑉𝑇 = (𝑣𝑖1, … , 𝑣𝑖𝑝) as follows

, 1,........, ,T
i i iy V z i nγ σ= + =  (44)

 where the random error 𝑧𝑖 has density function (40), 𝜸 = (𝐵1, 
… , 𝐵𝑝), 𝜎  > 0, 𝑝 > 0, 𝛼 > 0, 𝛽 > 0 are unknown parameters. 𝜇𝑖 = 𝑉𝑇𝜸 
is the location of 𝑦𝑖 . The location parameter vector 𝝁 = (𝜇1, … . , 𝜇𝑛)
𝑇 is represented by a  linear model 𝝁 = 𝑽𝜸, where 𝑽 = (𝒗𝟏, … , 𝒗𝑛)
𝑇 is a  known model matrix. Let 𝐹  and 𝐶  be the sets of individuals 
for which 𝑦𝑖 is the log-lifetime and log-censoring, respectively. The 
log-likelihood function for the vector 𝜽 = (𝛼, 𝛽, 𝑝  , 𝜎,  𝛾𝑇)𝑇of parame-
ters from model (39) has the form
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(45)

 where 𝑓(𝑦𝑖) is the density function (4) and 𝑆(𝑦𝑖) is the survival 
function (5) of 𝑌𝑖. The log-likelihood function for 𝜽 reduces to
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(46)

 where r is the number of uncensored observations (failures) 
and 𝑧𝑖 = (𝑦𝑖 − 𝑽𝑻

𝜸)⁄𝜎.  The score functions for the parameters 𝑝, 𝛼, 
𝛽,  𝜎 given by
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The MLE 𝜽̂ of the vector 𝜽 of unknown parameters can be calcu-
lated by maximizing the log-likelihood (46). We use the subroutine 
NLMixed in SAS to calculate 𝜽̂.  Initial values for and can be taken 
from the fit of the log-Zog Fisk (LZFisk) regression model with 𝛽 = 𝑝 
= 1. The fitted LGGBIII model gives the estimated survival function 
of Y for any individual with explanatory vector x

([ log(1 (1 exp( )) )] , )
( ; , , , , ) 1
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T
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y X

s y p
βγγ α

σα β σ γ
α

−−
− − +
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The invariance property of the MLEs yields the survival func-
tion for 𝑇 = exp (𝑌 )

([ log(1 (1 ( / ) ) ] , )( ; , , , , ) 1
( )

Pts t p
δ βγ λ αα β δ λ

α

− −− − +
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Γ

The approximate multivariate normal distribution 𝑁𝑝+5(0, 
𝐋(𝜽)−1) for 𝜽 ̂ can be used in the classical way to construct approx-
imate confidence regions for some parameters in 𝜽.  We can use the 
likelihood ratio LR statistic for comparing some special sub-mod-
els with the LGGBIII model. We consider the partition 𝜽 = (𝜽𝑻, 𝜽𝑻)
𝑻where 𝜽 is a subset of parameters of interest and 𝜽 2 is a subset 
of remaining parameters. The LR statistic for testing the null hy-
pothesis 𝑯𝟎:𝜽1=𝜽1

(0) versus the alternative hypothesis 𝑯𝟎:𝜽1≠𝜽1
(0) is 

given by 𝜔=2{ℓ(𝜽̂)−ℓ(𝜽̃)} where where 𝜽 ̃ and 𝜽̂ are the estimates 
under the null and alternative hypotheses, respectively. The statis-
tic 𝜔 is asymptotically (as 𝑛→∞) distributed as 𝜒ℎ

2 where ℎ is the 

dimension of the subset of parameters of interest.

Results and Discussion

Predicting the Time to Headache Relief

Thirty-eight patients are divided into two groups of equal size, 
and different pain relievers are assigned to each group. The out-
come reported is the time in minutes until headache relief. The 
variable censor indicates whether relief was observed during the 
observation period (censor = 0) or whether the observation is cen-
sored (censor=1).

The variables involved in the study are

•	 𝑡𝑖 − survival time to Headache relief (in minutes);

•	 𝑐𝑒𝑛𝑠𝑖 − censoring indicator (0 𝑜𝑟 1);

•	 𝑔𝑟𝑜𝑢𝑝𝑗 − (𝑗 = 1,2); 

Now, by fitting the model

0 1 1 ,( 2)i ij iy group zβ β σ= − ∗ − +

𝐻0: 𝑔𝑟𝑝 1 𝑡 𝑖𝑚𝑒 = 𝑔𝑟𝑝 2𝑡𝑖𝑚𝑒 𝑣𝑠 𝐻1: 𝑔𝑟𝑝 1 𝑡 𝑖𝑚𝑒 <  𝑔𝑟𝑝 2 𝑡 𝑖𝑚𝑒

The random variable 𝑧𝑖 follows the LGGBIII distribution (5) for 
𝑖 = 1, …  ,38. We are interested in modelling which group recovers 
faster. The MLEs of the model parameters are calculated using the 
procedure NLMIXED in SAS. Iterative maximization of the loga-
rithm of the likelihood function (46) starts with initial values for 
𝛽0  = 𝛽1 =  1, 𝛼  = 1, 𝛽 = 1, 𝑝 = 1, 𝜎 = 1, to fit the regression model. 
Table 1 lists the Maximum Likelihood Estimation of the model pa-
rameters. The value of Akaike Information Criterion (AIC), Correct-
ed Akaike Information Criterion (AICc), and Bayesian Information 
Criterion (BIC) statistics are smaller for LGGBIII regression model. 
A comparison of the new model with one of its sub-models which is 
LZB-D model and most useful model for fitting survival data which 
is Log-Weibull (LW) model using LR statistic is presented in Table 
2 together with p-values. From the values of these statistics, LGG-
BIII distribution provided a good fit for this data. The LGGBIII re-
gression model outperforms the other models irrespective of the 
criteria and it can be used effectively in the analysis of these data. 
So, the proposed model is a great alternative to model survival data. 
The model to know which group has a high rate of Headache relief 
that is the group that has a short time to Headache relief was fitted, 
recall that log(𝜆) = 𝜇 then, since 𝜇  = 𝑣𝑇𝖰 say log(𝜆) =  𝑏0 − 𝑏1 × (𝑔𝑟𝑜𝑢𝑝 
− 2) as the mean of the 𝑦𝑖 . Now, from the result provided in Table 3 
then substituting the value of 𝑏0 and 𝑏1 into the regression model 
as follows. For group 1
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Table 1: MLEs of the Model Parameters for the Time –To- Head-
ache Relief.

Model a 𝛽 𝒑 𝜎 𝒃𝟎 𝒃𝟏

LGGBIII
2.1801

-0.2355

0.06645

-0.0149

0.3863

-0.044

0.0117

-0.0007

3.1337

-0.0163

[< 
0.0001]

−0.1265

-0.0227

[< 
0.0001]

LZB-D
6.2949

-2.8683

0.012

-0.0265
—

0.0687

-0.02

3.091

-0.0773

[< 
0.0001]

−0.1487

-0.0638

[< 
0.0252]

LW — — —
0.2122

-0.0304

3.3091

-0.0589

[< 
0.0001]

−0.1933

-0.0227

[0.0185]

Table 2: The -2L, AIC, AICC, BIC of Time of Headache Relief.

MODEL -2Log-Like-
lihood AIC AICC BIC

LGGBIII 4.4 16.4 19.1 26.2

LZB-D 15.3 25.3 27.2 33.5

LW 18.8 24.8 25.5 29.7

Table 3: The Likelihood Ratio Test Statistic.

MODEL Hypothesis LR Statistic P-Value

LGGBIII vs 
LZB-D

𝐻0: 𝐿𝑍𝐵𝐷 vs

𝐻1: 𝐿𝐺𝐺𝐵𝐼𝐼𝐼
10.9 0.0017

LGGBIII vs LW
𝐻0: 𝐿𝑊 vs

𝐻1: 𝐿𝐺𝐺𝐵𝐼𝐼𝐼
14.4 0.0007

While for group 2

log 3.1337 ( 0.1265) ( 1)λ = − − × −

1 exp(3.0072)20.231,λ =

The probabilities of headache relief by 𝑡 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 are calculated 
as follows

0.38630.06645)]

1

3.0072log(1 (1 exp( )
0.01165( ) , 2.1801)

(2.1801)

y

G Y
γ

−− − − − 
 =

Γ

Note that 𝑦 = log(𝑚𝑖𝑛𝑢𝑡𝑒𝑠).

0.38630.06645)]

2

3.1337log(1 (1 exp( )
0.01165( ) , 2.1801)

(2.1801)

y

G Y
γ

−− − − − 
 =

Γ

These probabilities calculated at the observed times are shown 
for the two groups in Table 4.

Since the slope estimate is negative i.e. 𝑏1 = −0.1265 , 𝑆𝐸 =  
0.02272 then 𝑡 value = −5.57 with p-value of <  0.0001, it was seen 
that group 1 has a shorter time to Headache relief than group 2 that 
is pain reliever 1 leads to overall significantly faster relief, but the 
estimated probabilities give no information about patient-to-pa-
tient variation within and between groups. For example, while pain 
reliever 1 provides faster relief overall, some patients in group 2 
may respond more quickly than other patients in group 1. Provided 
below in Figures 3 & 4 is a graphical representation of the predicted 
value for the two groups.

Table 4: The predicted value of the Time to Headache Relief.

Obs Group Censor Patient Minutes Prediction

1 1 0 1 11 0.01909

2 1 0 2 12 0.02815

3 1 0 3 19 0.2425

4 1 0 4 19 0.2425

5 1 0 5 19 0.2425

6 1 0 6 19 0.2425

7 1 0 7 21 0.53836

8 1 0 8 20 0.36158

9 1 0 9 21 0.53836

10 1 0 10 21 0.53836

11 1 0 11 20 0.36158

12 1 0 12 21 0.53836
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13 1 0 13 20

0.36158

0.53836

0.80058

0.84721

0.88929

0.53836

0.76627

14 1 0 14 21 0.03185

15 1 0 15 25

0.36158

0.53836

0.80058

0.84721

0.88929

0.53836

0.76627

16 1 0 16 27 0.03185

17 1 0 17 30

0.36158

0.53836

0.80058

0.84721

17 1 0 17 30

0.88929

0.53836

0.76627

18 1 1 18 21 0.03185

19 1 1 19 24

0.36158

0.53836

0.80058

0.84721

0.88929

0.53836

0.76627

20 2 0 20 14 0.03185

21 2 0 21 16 0.05748

22 2 0 22 16 0.05748

23 2 0 23 21 0.20697

24 2 0 24 21 0.20697

25 2 0 25 23 0.41004

26 2 0 26 23 0.41004

27 2 0 27 23 0.41004

28 2 0 28 23 0.41004

29 2 1 29 25 65269

30 2 0 30 23 41004

31 2 0 31 24 0.5591

32 2 0 32 24 0.5591

33 2 1 33 26 0.71406

34 2 1 34 32 0.8666
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35 2 1 35 30 0.83619

36 2 0 36 30 0.83619

37 2 1 37 32 0.8666

38 2 1 38 20 0.15989

Figure 3: The plot of predicted values of Time to headache relief.
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Figure 4: The survival probability of the breast cancer patient after mastectomy.

Predicting Time-to-Death of Breast Cancer Patient

The study cohort comprises 1207 patients with cancer treated 
by mastectomy. The data consist of the random response variable 
given by the number of months (𝑦𝑖) after mastectomy. Uncensored 
observations correspond to patients having death time computed. 
Censored observations correspond to patients who were not ob-
served to have died at the time the data were collected. The num-
bers of censored and uncensored observations are 1135 and 72, re-
spectively, of the total of 1207 patients. The following explanatory 
variables were associated with each patient (for 𝑖 = 1, … . ,    1207):

•	 𝛿𝑖 ∶ is the event indicator where 1 represents the event (death) 
and 0 is censored;

•	 𝑝𝑎𝑡ℎ𝑐𝑎𝑡:  is the size of the pathologic tumor

•	 𝑒𝑠𝑡:  is the estrogen receptor status (0=negative, 1=positive, 
unknown= 2)

•	 𝑝𝑟: is the progesterone receptor status (negative = 0, positive =  
1, unknown = 2)

•	 𝑝𝑎𝑡ℎ𝑜𝑙𝑜: is the tumor size category in centimeter (0, <=2, 2-5, 
>5)

•	 𝑙𝑛𝑖: is the lymph node involvement (0 =no, 1= yes)

•	 ℎ𝑔: is the histologic grade (grade 1, grade 2, grade 3, unknown 
= 4)

•	 𝑖𝑛𝑝𝑜𝑠:  is the positive axillary lymph node. 

Now, we present the result by fitting the model

1 2 3 1 4 5 6 7ln ln ,i o i i i i i i iy b b pats b est b prt b tsct b it b hgt b pa t zσ= + + + + + + + +

where the dependent variable 𝑦𝑖 follows the LGGBIII density 
function (4) for 𝑖 = 1, … ,   1207. The MLEs of the model parameters 
was calculated using routine NLMIXED in SAS package. Iterative 
maximization of the logarithm of the likelihood function starts with 
initial values for and taken from the fit of the L regression model 
with 𝑝 = 1. Tables 5  & 6 lists the MLEs of the parameters for the 
LGGBIII and LZBD regression models fitted to the current data. The 
LR statistic for testing the hypothesis that 𝐻0 : p = 1 versus 𝐻1: 𝐻0 is 
not true, i.e., to compare the LGGBIII and LZBD regression models, 
is 𝑤 = 2{542.5 −  524.8} = 17.70 (p-value <  0.0001), which gave fa-
vorable indications toward to the LGGBIII model. A comparison of 
the new model with its sub-model using AIC, AICc, and BIC criteria 
was performed in Table 7. From the values of these statistics, LGG-
BIII distribution provides a good fit for these data. The fitted LGG-
BIII regression model indicates that not all explanatory variables 
are significant at 5%. [13] proposed a very useful regression model 
for analyzing censoring failure times, where the random variable of 
interest represents failure time and the failures times are assumed 
identically distributed in some specified form. He noted that if the 
proportional hazards assumption holds (or, is assumed to hold) 
then it is possible to estimate the selected parameter(s) without 
any consideration of the hazard function (non-parametric ap-
proach). This approach to survival data is called proportional haz-
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ards model. The Cox model may be specialized if a reason exists to 
assume that the baseline hazard follows a parametric form. In this 
case, the baseline hazard can be replaced by a parametric density. 
Typically, we can then maximize the full likelihood which greatly 
simplifies model fitting and provides interpretability at the cost of 
flexibility. From the result of the regression model, it was observed 

that not all the explanatory variables are significant that is size of 
the pathologic tumor, positive auxiliary lymph node, and the tumor 
size category in centimeter are significant at 5% and they are used 
to predict the survival time of the patients. Based on these three sig-
nificant variables, MLEs for this new model were presented [14,15]. 

Table 5: MLEs of the parameters for the LGGBII and LZBD regression models fitted to the Breast Cancer data.

𝜽
LGGBIII Regression Model LZBD Regression Model

Estimate SE p-value 95% CI Estimate SE p-value 95%CI

𝑝 0.258 0.488 0.597 
(−0.699,1.215) 1 - - -

𝛼 1.905 0.849 0.025 
(0.240,3.571) 1.436 0.711 0.044 (0.041,2.831)

𝛽 0.833 1.251 0.505 
(−1.620,3.287) 1.494 1.282 0.244 (−1.022,4.009)

𝜎 0.217 0.501 0.666 
(−0.766,1.199) 0.969 0.33 0.003 (0.323,1.616)

𝛽0 5.601 0.675 < .0001 
(4.276,6.926) 5.041 0.814 < .0001 (3.443,6.639)

𝛽1 -0.521 0.105 < .0001 (−0.726, 
−0.315) −0.504 - < .0001 -

𝛽2 -0.063 0.029 0.035 (−0.116, 
−0.004) −0.093 0.029 0.002 (−0.151, −0.035)

𝛽3 -0.08 0.09 0.375 
(−0.257,0.097) −0.090 0.089 0.315 (−0.265,0.085)

𝛽4 -0.042 0.189 0.823 
(−0.413,0.328) 0.031 0.196 0.872 (−0.353, −0.416)

𝛽5 0.153 0.18 0.397 
(−0.201,0.507) 0.168 0.188 0.372 (−0.201,0.537)

𝛽6 0.518 0.104 < .0001 
(0.314,0.722) 0.093 0.03 0.002 (−0.035, −0.151)

𝛽7 -0.211 0.248 0.395 
(−0.698,0.276) −0.145 0.224 0.517 (−0.585,0.294)

Table 6: MLEs of the parameters for the Cox regression models fitted to Breast Cancer data.

Parameter Estimate SE P-value 95%CI

𝖰1 0.764 0.145 < .0001 (−0.726, −0.315)

𝖰2 0.081 0.029 0.005 (−0.116, −0.004)

𝖰3 0.092 0.137 0.501 (−0.257,0.097)

𝖰4 0.011 0.294 0.969 (−0.413,0.328)

𝖰5 −0.256 0.281 0.362 (−0.201,0.507)

𝖰6 −0.758 0.144 < .0001 (0.314,0.722)

𝖰7 0.342 0.294 1.354 (−0.698,0.276)

Table 7: AIC, BIC and AICC statistics for comparing the LGGBIII, LZBD and Cox models.

MODEL -2Log-Likelihood AIC AICC BIC

LGGBIII 524.8 548.8 549 609.9

LZB-D 542.5 564.5 564.8 620.6

COX 868.8 882.8 − -
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1 2 6* * *i o iy b b patholo b inpos b pathcat zσ= + + + +

For a breast cancer patient treated by mastectomy with explan-
atory vector x, the survival probability was estimated, say 𝑃(𝑇 > 𝑡; 
𝛼, 𝛽, 𝑝   , 𝜎 , 𝖰,  𝑿) =  𝑆(𝑡; 𝛼, 𝛽, 𝑝   , 𝜎, 𝖰  , 𝑿). If the survival time of Patient 
1113 was calculated a follows, see Table 8:

log 1 (1 ( ) ) ,

( ) 1
( )

p
t

S t

δ β α
λ

α

− −
   − − +       =

Γ

Table 8: Survival for randomly selected patients’ probability.

Patients Patholo Inpos Status Pathcat

15 0.15 0 0 99

742 2 1 0 1

1113 99 20 1    99

1129 0.7 0 0 1

1150 1.2 4 1 1

1161 1.8 9 1 1

1163 2 2 0 1

1237 1.1 0 1 1

1236 3 0 0 2

1266 2.4 0 0 2

Table 9: The Significant value of Breast Cancer data LGGBIII Re-
gression Model.

𝜃 Estimate Standard.E P-value

𝛼 1.499 0.44 −

𝑝 0.156 0.06 −

𝛽 1.734 0.88 −

𝜎 0.226 0.15 −

𝑏0 5.766 0.311 < 0.0001

𝑏1 −0.554 0.093 < 0.0001

𝑏2 −0.078 0.019 < 0.0001

𝑏6 0.552 0.093 < 0.0001

From Table 9, we have 𝛼 = 1.499, 𝛽 = 1.734, 𝑝  = 0.156, 𝛿 = 1/ 𝛿 
= 4.425,

log 5.766 99 0.554 0.078 20 99 0.552TXλ µ β= = = − × − × + ×

= 4.008, 𝑡ℎ𝑒𝑛 𝜆  = exp(4.008) = 55.036.

 So, the survival probability of this patient say 𝑡 = 200 𝑚𝑜𝑛𝑡ℎ𝑠 
by inserting the parameters in equation above we have

( 200) 0.4599784P T ≥ =

That is the patient 1113 has chance of 46% of surviving past 
these months. Evidently, the survival probability converges to zero 

when the linear predictor 𝜇𝑖 = exp(𝑋𝑇𝖰)  tends to −∞ and converges 
to one when the linear predictor goes to +∞. In other words, the 
death of patients with breast cancer treated by mastectomy for a 
fixing time 𝑡 after the surgery, approaches one (zero) when the lin-
ear predictor increases to a very large negative (positive) number. 
We consider ten hypothetical patients who underwent mastectomy 
having fixed values for the explanatory variables given below

Conclusion
A new class of generalized Burr III distribution called the gen-

eralized gamma-Burr III distribution was proposed and studied. 
The GGBIII distribution has the family of Zografos and Balakrish-
nan distribution as special cases. The density of this new class of 
distributions was expressed as a linear combination of Burr III den-
sity functions. The GGBIII distribution was established to possess 
hazard function with flexible behavior. We also obtained closed 
form expressions for the moments, mean and median deviations, 
and distribution of order statistics. Maximum likelihood estimation 
technique was used to estimate the model parameters. To further 
the previous work, in this work, we built on the log transforma-
tion of GGBIII distribution proposed in our previous work. The 
main motivation was to predict the survival probability of breast 
cancer patients after surgery called mastectomy. The name of the 
log transformation is Log-Generalized Gamma Burr III (LGGBIII) 
model. We compared the proposed log-transform model with exist-
ing models such as Log-Zografos-Balakrishnan model Log- Weibull 
model and Cox model. Before the prediction, it has been established 
in the previous work that GBBIII distribution fitted better than its 
competitors. This work only confirms our curiosity in predicting 
time – to – death of breast cancer patients. We randomly selected 
10 patients and calculated their survival probability which was also 
visualized in the figure above. Additionally, we analyzed two groups 
of patients with headaches. Also, predicted the time – to – headache 
relief as shown in the table. In general, the proposed LGGBIII model 
has higher predictive power compared to its competitors as estab-
lished by different goodness of fit tests.

Acknowledgement
The authors would like to express their sincere gratitude to all 

those who have contributed in one way or the other towards the 
success of this paper.

References
1.	 Olobatuyi K I, Asiribo O E, Dawodu G A (2018) A New Class of Generalized 

Burr III Distribution for Lifetime Data. International Journal of Statistical 
Distributions and Applications. Vol. 4(1): 6-21. 

2.	 Smith R, Bain L (1975) An Exponential Power Life-Testing Distribution. 
Communications in Statistics-Theory and Methods 4: 469-481.

3.	 Hjorth U (1980) A reliability distribution with increasing, decreasing, 
constant and bathtub failure rates. Human and Ecological Risk 
Assessment Technometrics 22: 99-107. 

https://dx.doi.org/10.26717/BJSTR.2022.46.007423
https://www.researchgate.net/publication/312031450_A_New_Class_of_Generalized_Burr_III_Distribution_for_Lifetime_Data
https://www.researchgate.net/publication/312031450_A_New_Class_of_Generalized_Burr_III_Distribution_for_Lifetime_Data
https://www.researchgate.net/publication/312031450_A_New_Class_of_Generalized_Burr_III_Distribution_for_Lifetime_Data
https://www.tandfonline.com/doi/abs/10.1080/03610927508827263
https://www.tandfonline.com/doi/abs/10.1080/03610927508827263
https://www.tandfonline.com/doi/abs/10.1080/00401706.1980.10486106
https://www.tandfonline.com/doi/abs/10.1080/00401706.1980.10486106
https://www.tandfonline.com/doi/abs/10.1080/00401706.1980.10486106


Copyright@ Olobatuyi Kehinde Ibukun | Biomed J Sci & Tech Res | BJSTR. MS.ID.007423.

Volume 46- Issue 5 DOI: 10.26717/BJSTR.2022.46.007423

37945

4.	 Rajarshi S M B (1988) Bathtub distributions. Communications in 
Statistics, Theory and Methods 17: 2597-2521.

5.	 Mudholkar G S, Srivastava D K, Friemer M (1995) The exponentiated 
Weibull family: A reanalysis of the bus-motor- failure data. Technometrics 
37(4): 436-445.

6.	 Xie M, Lai C D (1996) Reliability analysis using an additive Weibull 
model with bathtub shaped failure rate function. Reliability Engineering 
and System Safety 52(1): 87-93.

7.	 Lai C D, Xie M, Murthy D N (2003) A modified Weibull distribution. 
Transactions on Reliability, 52: 33-37 Lawless, J. F. 2003. Statistical 
Models and Methods for Lifetime data. Wiley, New York.

8.	 Famoye F, Lee C, Olumolade O (2005) The beta-Weibull distribution. 
Journal of Statistical Theory and Applications 4: 121-136.

9.	 Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some 
properties and applications to censored data. Journal of Modern Applied 
Statistical Methods 6: 173-186.

10.	Carrasco J M F, Ortega E M, Cordeiro G M (2008) A generalized modified 
Weibull distribution for lifetime modeling. Computational Statistics and 
Data Analysis 53(2): 450-462.

11.	Marcelino P, Ortega EM, Cordeiro G M (2011) The Kumaraswamy 
generalized gamma distribution with application in survival analysis. 
Statistical methodology 8.5: 411-433.

12.	Gradshteyn I S, Ryzhik I M (2000) Table of Integrals, Series, And Products 
(7th Edn.).,

13.	Cox D R (1972) Regression models and life tables (with discussion). 
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 
34(2): 187-220.

14.	Antonio E G, da-Silva C Q (2014) The Beta Burr III Model for Lifetime 
Data. 1 – 33. Brazil.

15.	Cordeiro GM, Giovana O S, Ortega E M (2011) The Beta Extended Weibull 
Family, p. 1-29.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2022.46.007423

Olobatuyi Kehinde Ibukun. Biomed J Sci & Tech Res

https://dx.doi.org/10.26717/BJSTR.2022.46.007423
https://www.tandfonline.com/doi/abs/10.1080/03610928808829761
https://www.tandfonline.com/doi/abs/10.1080/03610928808829761
https://www.jstor.org/stable/1269735
https://www.jstor.org/stable/1269735
https://www.jstor.org/stable/1269735
https://www.sciencedirect.com/science/article/abs/pii/0951832095001492
https://www.sciencedirect.com/science/article/abs/pii/0951832095001492
https://www.sciencedirect.com/science/article/abs/pii/0951832095001492
https://core.ac.uk/download/pdf/48632714.pdf
https://core.ac.uk/download/pdf/48632714.pdf
https://core.ac.uk/download/pdf/48632714.pdf
https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1134&context=jmasm
https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1134&context=jmasm
https://digitalcommons.wayne.edu/cgi/viewcontent.cgi?article=1134&context=jmasm
https://www.sciencedirect.com/science/article/abs/pii/S0167947308004192
https://www.sciencedirect.com/science/article/abs/pii/S0167947308004192
https://www.sciencedirect.com/science/article/abs/pii/S0167947308004192
https://web.stanford.edu/~lutian/coursepdf/reading-generalized-gamma.pdf
https://web.stanford.edu/~lutian/coursepdf/reading-generalized-gamma.pdf
https://web.stanford.edu/~lutian/coursepdf/reading-generalized-gamma.pdf
https://www.sciencedirect.com/book/9780123736376/table-of-integrals-series-and-products
https://www.sciencedirect.com/book/9780123736376/table-of-integrals-series-and-products
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1972.tb00899.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1972.tb00899.x
https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1972.tb00899.x
C://Users/Admin/Downloads/11-BJPS179.pdf
C://Users/Admin/Downloads/11-BJPS179.pdf
https://www.researchgate.net/publication/265878815_The_Beta_Extended_Weibull_Family
https://www.researchgate.net/publication/265878815_The_Beta_Extended_Weibull_Family
https://www.itmedicalteam.pl/articles/evaluation-of-target-definition-for-stereotactic-reirradiation-of-recurrent-glioblastoma-102879.html
https://biomedres.us/
https://dx.doi.org/10.26717/BJSTR.2022.46.007423

