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Objective: There are few reliable quantitative methods to clinically evaluate heal-
ing of chronic leg ulcers, a type of wound that affect 2% of the world population. When 
non-healing, the presence of complications such as infection may not be visible in the 
wound. The use of artificial intelligence (AI) through deep machine learning holds 
promises in augmenting clinical assessment, and advancements using artificial neural 
networks are emerging in wound healing science specific to detection of inflamma-
tion and infection. Here, the authors present a proof-of-concept protocol to determine 
the degree to which inflammatory biomarker concentrations, as measured by a novel 
nanofiber composite biosensor, can be combined with thermal and visible light photo-
graphic wound images to form a wound healing classification (‘healing’ or ‘non-heal-
ing) in patients with chronic venous leg ulcers. 

Methods: The protocol recommends that the chronic wounds of 10 patients re-
ceiving care in an outpatient wound clinic will be investigated in this longitudinal 
observational study during weekly clinical, imaging and biosensing wound assess-
ments conducted over 4 continuous weeks of care. Through deep-machine learning, 
predictive models will be generated connecting sensor data and thermal image data as 
inputs for wound healing (or non-healing) classification with respect to the Bates-Jen-
sen wound assessment criteria. Three models (image data only, sensor data only, and 
fusion of both image and sensor data) will be generated and corroborated with clinical 
assessment findings to determine whether the models accurately reflect wound heal-
ing status. The protocol was approved by the institution’s review board.

Abbreviations: AI: Artificial Intelligence; BWAT: Bates-Jensen Wound Assessment 
Tool; CNN: Convolutional Neural Network; eTO: Ethylene Oxide; FN: False Negative; 
FP: False Positive; GCP: Good Clinical Practices; ICH: International Conference of Har-
monization; LOD: Limit Of Detection; LSTM: Long Short-Term Memory; MANOVA: Mul-
tivariate Analysis Of Variance; ML: Machine Learning; NRS: Numerical Rating Scale; 
PLA: MWCNT: Porous Polylactide Multiwall Carbon Nanotube; RED Cap: Research 
Electronic Data Capture; RNN: Recurrent Neural Network; SBS: PLA:MWCNT: Sty-
rene-Butadiene-Styrene Porous Polylactide Multiwall Carbon Nanotube; SVM: Support 
Vector Machine; TGF-β: Transforming Growth Factor – Beta; TL: Transfer Learning; 
TN: True Negative; TNF-α: Tissue Necrosis Factor – Alpha; TP: True Positive; VEGF: 
Vascular Endothelial Growth Factor
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Introduction
During the past five years, the application of artificial 

intelligence (AI) through machine learning (ML) to advance wound 
care science has grown rapidly for both the assessment of wounds 
and the development of new treatment models of care for patients 
with chronic wounds [1-3]. Chronic or slow-to-heal wounds effect 
9-12 million individuals each year, costing the U.S. healthcare system 
over $32 billion [4]. Chronic wounds are particularly challenging 
for clinicians because this patient population often presents with 
multiple comorbidities such as obesity, diabetes mellitus, renal 
disease, neuropathy, and vascular disease that increase the risk 
for ulcer complications including infection, leading to a state of 
continual inflammation that negatively influences healing [5]. 
Regardless of wound types such as venous leg or diabetic foot 
ulcers, most chronic wounds are treated by primary care providers 
and when treatment does not produce healing, patients are typically 
referred to specialized outpatient clinics where available. These 
clinical visits are a premium resource for patients; and, although 
governmental health care and private insurance in the U.S. generally 
covers a maximum of two visits per patient per week, most patients 
typically physically interact with a wound care specialist or home 
healthcare provider only once per week due to barriers to access 
such as lack of transportation or job-related responsibilities, even 
when complications arise [6].

Methods to augment clinical care are needed because infrequent 
access to wound care providers can place particularly high demands 
on patients to be adherent with wound self-care instructions. This 
is especially true when complications are present, which may 
require multi-faceted therapy and/or frequent dressing changes 
and application of topical and/or oral agents. Self-managing these 
additional treatment demands at home can pose a major challenge 
for many patients who may lack adequate functional dexterity, 
mobility, or environmental and financial means to care for their 
wounds. Additionally, many patients are unable to adequately assess 
when these additional treatment modalities are no longer needed 
or useful due to lack of knowledge of signs and symptoms of healing 
or non-healing. These challenges present a clinical opportunity 
for ongoing wound monitoring using currently available “high-
tech” approaches in the patient’s home and clinical care settings. 
Specifically, the quantitative classification of wound status and 
determination of the current stage of inflammation as related to 
clinical signs such as unusual redness or hyper granulation tissue 
readily discernible through visible inspection or imaging [7]. The 
prediction of wound healing outcomes such as wound contracture 
and epithelization by utilizing AI through convolutional neural 
networks (CNN) is an emerging classification technique that could 
potentially augment clinical wound assessment, enhance patient  
self-care, and reduce the need for additional and often prolonged 
wound visits [2]. 

 
Convolutional Neural Networks 

In technical terms, a CNN is a type of neural network that 
employs ML algorithms to process various types of data and 
draw conclusions and has been shown to achieve high accuracy in 
recognizing objects [8]. A CNN consists of multiple convolutional 
layers, the main building blocks to which filters are applied, each 
responsible for combining model inputs (e.g., images and sensor 
data) to create a map from which to extract relevant features or 
components/relationships of the model inputs. These inputs are 
then utilized in the final layer for classification or prediction of an 
output value such as healing or non-healing based on a learned 
mathematical relationship. CNNs are advantageous as there is no 
need to manually label features since the relevant classification or 
prediction features are learned automatically at each layer of the 
network. As it relates to the medical field, CNNs have been used to 
classify tumors, [9] analyze x-ray images, [10,11] and have been 
shown to be accurate in wound characteristic analysis [12-14]. 
Shenoy, et al. [13] used a CNN to classify and determine classification 
accuracy (%) of post-surgical wounds and wound characteristics 
via smartphone images; four categories included drainage (72%), 
fibrinous exudate (83%), granulation tissue (85%), and surgical 
site infection (84%). Closed wound images were also analyzed for 
the presence and accuracy of detecting presence of staples (95%), 
steri-strips, (97%) or sutures (85%) [13]. 

In another example, Wang, et al. [14] used a CNN to automatically 
segment wound images for computation of wound closure over 
multiple weeks of healing. In the Wang study, the wound image 
features extracted by CNN were then used by a support vector 
machine (SVM) which is a ML model that uses input features to 
create a mathematical vector (hyperplane) or algorithm to classify 
whether the wound was infected or not infected, achieving an 
accuracy classification of 95.7%. The CNN was also used by Nejati, 
et al. [15] in fine-grained tissue analysis of chronic wounds in which 
a feature extraction algorithm and a SVM was used to assess the 
accuracy of classifying wound characteristics into seven distinct 
tissue types including necrotic (91%), healthy granulation (83%), 
slough (81%), infected (96%), unhealthy granulation (82%), 
hyper granulation (94%) and epithelialization (78%) with an 
overall 86% accuracy of classifying wound characteristics. Based 
on these previous studies we posit that is possible to use CNNs for 
classification of the wound status to augment clinical assessment 
data. Additionally, the wound images taken with a wound camera 
as input into the CNN and the associated output classification or 
“prediction” can be explored as a benchmark for wound healing 
status.

Biosensing

In addition to wound imaging, biosensing technology has been 
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developed to detect the presence of wound contaminants and 
biomarkers that allow for the characterization of features analysis, 
for example, of pyocyanin, an important signaling molecule in 
the quorum sensing cascade for Pseudomonas aeruginosa, one 
of the most prevalent wound bacteria leading to infection and 
amputation [10]. Previous work includes active efforts in thermal 
image acquisition and machine learning-based image analysis 
in the biomedical context and the use of a real-time, intelligent 
image acquisition, processing, and analysis platform for cell culture 
images that can quickly be adapted to wound images [9].

Objective

The purpose of this pilot study is to establish proof-of-concept 
for this diagnostic AI-based approach that links clinically validated 
wound image data and quantitative inflammatory biomarkers to 
the healing state of chronic leg ulcers. This study uses deep-ML 
approaches to distinguish connections or predictive measures 
between these two data types. This combination has the potential 
to provide objective data through continuous remote monitoring 
of the wound, similar to the protocol by Zoppo and colleagues 
using remote monitoring through a telehealth platform [8] to alert 
patients about wound complications and to communicate critical 
information to clinicians. The long-term objective is to improve 
subjective wound assessment by providing a more “precise” 
parameter for healing status. The wound state of 10 patients with 
chronic wounds will be classified by evaluating thermal image and 
biochemical sensor data specific to the wound bioburden collected 
during 4 consecutive weekly wound clinic visits. These data will 
enable the development and evaluation of the accuracy of three ML 
models in wound classification tasks (healing or non-healing) by 
testing two assumptions:

1.	 The sensor-only model will be at least as accurate as the 
thermal image-only model

2.	 A fusion model (integration of data layered from both 
sources) will be more accurate than the image-only model or 
the sensor-only model. 

This work will lay the foundation for the further refinement 
and development of a valid, quantitative, and predictive biomarker-
based sensor that can be combined with real-time image analysis 
to improve the impact and efficiency of clinical visits. Potentially 
relevant outcomes would be preventing and/or decreasing wound 

complications, reducing major healthcare costs from complications 
(such as infection or amputation) and improving the quality of care 
and quality of life for patients suffering with chronic wounds. 

Method
Study Design

A total of 10 patients will be recruited from a wound clinic in 
the Southeastern U.S. Inclusion criteria include 18 years of age and 
above, venous leg ulcer of greater than 4 weeks duration, ulcer size 
greater than 4 X 4 cm (1.6 X 1.6 inches) (size requirement is due 
to dimension of the sensors), expected to receive wound care for 
at least weekly for 4 weeks with at least one clinic visit per week, 
intact skin sensory sensation around the peri-wound area, and able 
to provide written informed consent. Exclusion criteria include 
ulcer currently being treated for infection or is symptomatic for 
infection including odor, excessive exudate, purulence, pain, and/
or a beefy red wound bed. Participants will participate over 4 
weeks, in which they will return to the clinic weekly for dressing 
changes and wound treatment according to the standard of care. All 
necessary equipment will be supplied to the clinic. 

At each clinic visit, the wound will be cleansed, debrided (if 
necessary), visually assessed and wound scored using the Bates-
Jensen Wound Assessment Tool (BWAT) scale, and imaged three 
times with the thermal camera by the research assistant. Thermal 
images will be captured with the participant in a reclined position 
after 15 minutes of acclimatization to ambient conditions. After 
acclimatization, four sensors (one for each individual biomarker 
and one control) will be placed on the wound for a total of 
approximately 30 minutes (each inflammatory biomarker sensor 
is individually placed for 7 minutes plus a non-functionalized 
control sensor). During this time, a 1 Vpk-pk sine wave will be 
applied across the interdigitated electrode array at a frequency 
sweep between 200 – 2000 Hz. The voltage will be supplied by a 
function generator and impedance spectra will be recorded at a 100 
Hz sampling rate using an inductance, capacitance and resistance 
(LCR) meter. Characterization of the real and reactive components 
of the electrochemical impedance response can then be related 
to calibrated concentrations of the biomarkers. After all data are 
recorded, the wound will be treated and re-dressed per clinical 
protocol by wound clinic personnel. (Figure 1) provides a CONSORT 
diagram that depict patients flow throughout the study.
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Figure 1: Study CONSORT flow diagram.

Thermal Imaging

Thermal images of the wound will be captured with the 
Wound Vision Scout camera (Wound Vision, Indianapolis, IN), an 
FDA-approved visual and thermal imaging device that has been 
found to produce reliable and reproducible digital and long-
wave infrared images of radiation emitted by the wound [16]. In 
a study conducted by Langemo and Spahn of a long-wave infrared 
device to identify the accuracy of relative tissue temperature 
variations of the body surface and underlying tissue, findings 
showed the intraclass correlation coefficient was 0.94, indicating 
excellent reliability [17]. It is well established that higher or lower 
temperature differences over time can suggest presence or absence 
of inflammation, infection or underlying tissue perfusion [17]. 
Images will be analyzed for wound temperature and characterized 
for the distal and proximal wound edges and medial, lateral, and 
center aspects of the wound bed. The mean wound temperature 

and difference between the wound and control temperatures will 
also be calculated.

Standardized Clinical Assessment

Wound status will be measured with the BWAT (used with 
permission)  [24]. The BWAT, a 13-item evidence-based assessment 
tool to monitor wound characteristics and healing progress was 
selected because it has been used in numerous studies of chronic 
wound healing including lower extremity and foot ulcers and 
pressure injuries and provides a detailed score of several wound 
characteristics including color, odor and necrosis, indicative of 
non-healing complications such as infection. This instrument also 
includes 2 items related to wound size. Each item is scored from 
1-5 on a modified Likert scale where 1 indicates least severe and 
5 indicates most severe and are summed for a maximum total 
score of 65. Wound status is scored on a continuum where higher 
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total scores indicate more severe wound degeneration and lower 
indicate wound regeneration and tissue health. The instrument 
has interrater reliability reported to be 0.78 - 0.92 [19,24]. The 
score from this clinical assessment will be compared with the final 
model output to determine correlations with healing status. The 
progression (or regression) of scores over the course of the 4-week 
study and the wound size will be used to determine the overall 
classification of ‘non-healing’ or ‘healing’ (i.e., a score reduction of 
40% [20] after four weeks). 

Biosensor Device 

The biosensor device [21,22] (Figure 2) consists of a 
conductive nanofiber (black portion in contact with wound) 
composite, the silver portion on the top is where the sensor gets 
connected to the electrical signal measuring device (LCR meter, 
potentiostat, etc.) and the darker black portion in the middle is 
an insulation layer. The sensor is embedded in the composite 

and functionalized (antibodies added) to provide a proportional 
electrochemical response to changes in biomarker concentration 
similar to devices published in the literature [18,23]. The biosensor 
consists of a combination of biocompatible elements, including 
a polyester base layer, silver ink and MWCNT both having been 
demonstrated as safe in short topical exposures such as presented 
here (except for individuals with silver allergies), and the poly-l-
lactide polymer base for conductive nanofibers. We developed the 
nanofiber composite biosensor to provide quantitative assessment 
of the following inflammatory markers related to various stages 
of wound healing: transforming growth factor – beta (TGF-β), 
tissue necrosis factor – alpha (TNF-α), and vascular endothelial 
growth factor (VEGF). TNF-alpha, commonly associated with the 
pro-inflammatory M1 macrophage phenotype, will be measured 
against TGF-beta (anti-inflammatory, associated with proliferation 
phase of wound healing and M2 macrophage phenotype) and VEGF 
(associated with angiogenesis). 

Figure 2: Flexible nanofiber composite biosensor on polyethylene backing.

Each biomarker (TGF-beta, TNF-alpha, and VEGF) measurement 
will be normalized using a control (non-functionalized) sensor 
that will characterize the general electrochemical impedance 
response to the wound bed. Taken together, adding biosensor data 
and ML image analysis to classification modeling provides a major 
advantage in the ability to leverage information from the wound 
that is not readily available through visible inspection (i.e., image-
based approaches or human evaluation in-clinic). In this way a more 
objective and quantitative approach to classification that advances 
the state-of-art and enables further validation and prediction of AI-
based wound healing models will use biomarkers already accepted 
as indicators of progression of wound healing. 

Classification

These data will be used to implement a CNN that evaluates 
a sequence of images. This approach builds on the classic 
implementation of CNNs that classify single images by adding a time 
sequence component to capture wound changes as an input into 
the classification decision of the model. By exploring longitudinal 
sequencing, we posit that the deep ML model will be able to account 
for the change in wound features (size, color) across multiple 
images. This approach is similar to the work of other researchers 
[14] in which a series of extracted features from multiple images 
over time was evaluated to estimate the healing state for the wound. 
However, instead of estimating the date in which the wound will be 
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healed, our model will classify the wound as ‘healing’ (versus ‘non-
healing’) by calculating changes in surface area and temperature 
from thermal images and analyzing the clinical assessment via the 
BWAT score. The ML classification will be accomplished by using 
the later layers from a previously trained CNN model (i.e., Alex 
Net and ImageNet) as a high-level feature extraction algorithm. 
These pre-trained models will readily extract basic features from 
the image, such as wound edges and background color, so that 
the newly constructed CNN will only focus on features specific to 
wound analysis. 

This process greatly reduces the number of images needed for 
model training, and in turn gives this study a feasible scope with 
respect to numbers of patients and required clinical interactions. 
This technique is a form of transfer learning  [21] and was deployed 
by researchers  [13,15] due to the limited number of wound images 
that could be collected and used in clinical image analyses. As 
presented, n=10 participants will produce 120 thermal images and 
120 counter light images (3 images per visit, 4 weekly visits, 10 
patients). These 120 images will be combined with the 30 minutes 
of time-series data (4 sets per patient) to comprise the training 
set, which is also supplemented with open-source images using 
the transfer learning approach. Tools such as Efficient Net have 
successfully been used to pre-train models for image classification 
tasks using small datasets. We will employ these tools, and others 
in the Python Keras library to successfully implement the deep 
learning approach, despite the small dataset for this proof-of-
concept work. Based on this transfer learning technique, for each 
image given as input the pre-trained CNN will extract a feature 
vector; in other words, if n=X -images are provided as input, then 

an equal number of feature vectors will be generated. These feature 
vectors will then be passed to a SVM that can be used to separate 
data into various classes. Thermal images (and the associated 
extracted features) will then be classified into ‘healing’ or ‘non-
healing’ based on the BWAT score that serves as an alternative to 
traditional expert labelling used in supervised ML approaches. 

To summarize this approach, the CNN-SVM classifies a wound 
thermal image as healing or non-healing through extraction of 
basic features via pre-trained CNN. The model will be trained to 
recognize healing through patterns observed in input image data 
and BWAT scores. The inclusion of biosensor data as a time series 
requires the use of a different model. The CNN approach can also 
be used for feature extraction from large sets of sensor data, but 
the later layers will then be fed sensor data in sequential order 
to a recurrent neural network (RNN), specifically a long short-
term memory (LSTM) neural network, that performs the healing 
or non-healing classification task. An LSTM neural network is a 
type of RNN consisting of a chain of repeating units that enable 
learning from time series input (i.e., sequences of data).Ohura 
[21] Unlike traditional RNNs, LSTM networks can learn long-
term dependencies. For this classification model, the CNN-SVM 
architecture exhibited in previous research Shenoy [13,15] serves 
as a foundation for the CNN-LSTM deep ML approach to chronic 
wound diagnostics. This pilot study introduces an advancement in 
current approaches by incorporating as additional input, biosensor 
time series data quantifying the levels of inflammatory biomarkers 
including transforming growth factor – beta (TGF-β), tissue necrosis 
factor – alpha (TNF-α), and vascular endothelial growth factor 
(VEGF), known to be associated with wound healing (Figure 3). 
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Data Analytic Processes

To determine feasibility of the ML approach, three different 
models with different input values will be implemented and 
evaluated with the same output classification of ‘healing’ or ‘non-
healing’. The first model (baseline method) will consist of the 
series of thermal images as input, the second model will take as 
input a series of sensor readings for biomarker concentration from 
the biosensor device, and the last model will take both image and 
sensor data as input.  

To develop the models, two major processes will include 

1.	 A training set consisting of the input values of image and 
biosensor data and the output label (BWAT score of wound 
state along continuum of healing over 4 weeks) and 

2.	 Evaluation of model accuracy. To accomplish the training, 
a multiphase approach was developed for determining wound 
healing that consisted of an advancement on the CNN-SVM 
architecture: 

•	 Step one will utilize transfer learning to associate thermal 
images (these provide thermal information at respective 
locations within the wound bed) and visible light images with 
the wound state. Thermal and light wound images, the later 
collected from open-source wound image databases [25,26] 
and the counter image produced by the Wound Vision Scout 
camera, will be used to establish a training set for the CNN. 
Because there are far fewer thermal images than light images, 
a transfer learning approach will first be employed in which a 
CNN model is trained using light wound images against BWAT 
wound status scores to determine the appropriate category to 
which an image belongs. After training the CNN model, the later 
layers from the model will be removed and replaced with an 
SVM. The model’s knowledge on light wound images and any 
respective correlations with the BWAT wound scores will be 
transferred to thermal images with the same BWAT scores. A 
pre-trained CNN for basic image segmentation will be applied 
to the thermal images and extracted features will be inputs into 
the SVM and will be used to make the healing and non-healing 
classifications.

•	 In step two, image classification will be associated with 
biosensor readings to generate corresponding BWAT wound 
states. Because the sensor readings were collected at the 
same time as the thermal images, it can be assumed that the 
sensor readings taken at this time will be related to the BWAT 
classifications generated by SVM from step one. Using this 
assumption, a RNN will be trained to predict (output) sensor-
derived wound state classifications from taking inputs as 
the TGF-beta, TNF-alpha, and VEGF sensor readings and the 

extracted features from the thermal images given the shared 
time scale. Specifically, the LSTM neural network will be used to 
combine image-based wound state labels and real-time sensor 
data. The LSTM is uniquely equipped to handle time-series 
data, [25-27] but the combination of images to classification is 
a novel advancement in the field.

This sub-objective will be separated into two LSTMs, with one 
including both biosensor data and images as input (fusion model) 
and one including biosensor data as inputs (biosensor model). 
In the second phase, a set of model accuracy experiments will be 
conducted to evaluate the assumptions that 

a)	 A model that uses biosensing data as input will be as 
accurate, if not more accurate, than a model that uses only the 
image data; additionally, 

b)	 A model that fuses both the image and biosensing data as 
input will be more accurate than a model that uses only images 
or only biosensing data. In testing these assumptions, a set of 
experiments will be conducted in which each model (CNN-SVM 
image, LSTM biosensor, LSTM fusion) will be evaluated using 
the same collected validation data which is made up of wound 
characteristics (size, depth, edges, etc.) that form an overall 
BWAT score wound state based on the image, biosensing, or 
combination data presented. This will serve as the ground truth 
to which the model’s output classification will be compared. 

Data Management

This study will use Research Electronic Data Capture (RED 
Cap) for direct data entry and management. RED Cap is a software 
toolset and workflow methodology for the electronic collection and 
management of research and clinical trials data. RED Cap provides 
secure, web-based, flexible applications, including real-time 
validation rules with automated data type and range checks at the 
time of data entry. Exports are made available for several statistical 
packages including SPSS, SAS, SATA, R and Microsoft Excel.

Statistical Analysis

For this study, the independent variables are the three models, 
and the dependent variables are the accuracy evaluation metrics 
listed below. A multivariate analysis of variance (MANOVA) test 
will be used to determine whether there is a significant difference 
(P value < 0.05) between the models and their performance on 
the validation dataset as it relates to each of the accuracy metrics. 
Given the relatively small sample size, statistical power may not be 
achieved for the MANOVA test depending on the variance between 
participants and weekly visits. Any limitations in the statistical 
approach will be properly reported during dissemination of pilot-
study results. Descriptive statistics will be used to characterize 
the population and determine relationships between models and 
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BWAT score classifications. This analysis will prove or refute the 
two assumptions.  

•	 True Positive (TP), the number of times the model is 
correct in classifying the wound along the BWAT score. 

•	 True Negative (TN), the number of times the model is 
correct in classifying the wound as not belonging to a particular 
BWAT score.

•	 False Positive (FP), the number of times the model is 
incorrect in classifying the wound along the BWAT score.

•	 False Negative (FN), the number of times the model 
is incorrect in classifying the wound as not belonging to a 
particular BWAT score.

•	 Precision, the number of correct actions made (TP) 
divided by the number of all actions made (TP + FP).

•	 Recall, the number of correct actions made (TP) divided 
by the number of instances where an action existed (TP + FN).

•	 F-Measure, the balance between precision and recall. 

Ethical Approval
This protocol (#Pro00100687) was approved by the Medical 

University of South Carolina Institutional Review Board on 
6/29/2020, conforms to the Declaration of Helsinki and will be 
conducted in compliance with Good Clinical Practices (GCP) of the 
International Conference of Harmonization (ICH). Participants will 
provide written informed consent for their study participation and 
receive $50 per study visit, total $200 (USD) for completion of all 4 
visits. The study is expected to commence January 2023.

Data Safety and Monitoring
The attending wound physician will serve as the study’s 

medical safety monitor. Participants will be asked to rate their 
level of pain on a numerical rating scale (NRS) of 0-10 from their 
wound before, during, and after operation of the biosensor on their 
wound bed. Study procedures will be stopped during biosensor 
operation if wound pain levels become elevated. Patient wounds 
will also be clinically assessed for any deleterious adverse events 
that may remove them from study participation, such as: excessive 
bleeding or severe wound deterioration as noted on the BWAT 
score. Participants will also be asked to report any suspected or 
noted adverse events that may occur outside of the study visit. The 
study team will confer with the study physician on the study’s risk 
assessment profile and study continuance.

Conclusion
Chronic wounds often require months or, in some cases, 

years to heal, frequently develop complications, and require 

multiple treatment modalities and specialty wound care. Clinical 
assessment methods that provide quantitative data such as the 
use of biosensors to augment wound inspection could potentially 
revolutionize current strategies for detecting complications such as 
wound infection. The recently developed biosensing device using 
artificial intelligence will test a proof-of-concept of input from 
three deep-ML models that include individual and combined data 
from thermal images and the biosensor on healing and non-healing 
classification in a patient suffering with chronic wounds such as 
venous leg ulcers. The ultimate goal is to fill the gap in the need for 
point-of-care wound monitoring using novel technology to combat 
complications in this highly challenging patient population.

Main Take Away Points
1.	 Chronic wounds are often fraught with complications 
such as prolonged inflammation that lead to poor healing.

2.	 Artificial intelligence developed through machine learning 
models using convolutional neural networks have the potential 
to advance wound science for the detection and prevention of 
wound complications during healing.

3.	 Biosensing devices that monitor the wound during 
healing and utilize artificial intelligence can augment clinical 
assessment and enhance wound care.
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