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The traditional use of physiological instruments to estimate information about the 
prosperity of the human body was achieved by unequivocal spotlights like blood glu-
cose, neural conduction, circulatory strain, and many more. These essentially provided 
insights about a patient’s body, thereby aiding medical practitioners in clinical evalua-
tions. However, they are insufficient in precision and accuracy at initial screening and 
early diagnosis. This lead to the wide spectrum of availability of AI tools and software, 
that promote and support the field of biomedical applications to unearth the answers 
to the diversity of biological queries. This integrated approach of computer-aided 
diagnosis has revolutionized the system of diagnosis and screening; Therefore, this 
review is an expatiate documentation on the fundamental process of image analysis, 
availability of AI tools rendered to interpret diseases and formulate treatment options. 
Moreover, it also covers the modalities in image analysis and the development of CAD 
as a potential diagnostic solution.
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Introduction
The traditional means and application system of automatic 

data analysis has transformed into a more integrated approach 
of cognitive systems. Along with globalization of AI – tools and 
software, an innovative approach dedicated to the interpretation  

 
and semantic analysis of data in medical image analysis was a  
class of cognitive systems– the UBIAS (Understanding Based 
Image Analysis Systems). Automated image analysis based on AIA 
algorithms, uses finely tuned software to extract data from digital 
images. It recognizes specific shapes and patterns in the images and 
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gathers quantitative information that is then used for further data 
analysis. AIA is heavily used in screening large amounts of image 
data generated in high-content screening (HCS) experiments for 
drug discovery and phenotypic screening biological research [1-3]. 
In HCS, changes in cell morphology as a consequence to exposure 
to chemicals or RNAi reagents are detected using image analysis 
to elucidate the workings of normal and diseased cells. Mostly, the 
term (high content) imaging is used for automated microscopes 
that image cells, tissues, or small organisms using fluorescent 
and transmitted light [4]. Fluorescent tags attached to different 
cellular macromolecules help visualize cells using automated 
microscopy [5,6]. AIA is highly desirable in pharmaceutical and 
biological research industries so that a multitude of samples can be 
analysed in a small amount of time. The visualization of previously 
inaccessible realms in biology has only been possible due to the 

coupling between modern computers and microscopy technology 
[7]. 

Figure 1 describes the Biomedical analysis system. Various 
software packages, mostly provided by the vendors, can acquire, 
analyse, and manage high content images and offer advanced data 
analysis systems. In fact, improved GUIs in the latest versions of 
these software packages help in real world workflows. In order 
to successfully implement the HCS approach, specialized tools for 
data archiving, visualization and mining play a very important role 
[8]. Image analysis usually involves several steps for measuring 
various features within the image. After image acquisition the 
first step is background correction, identification of objects from 
background, separation of individual objects by segmentation and 
finally features extraction from selected objects [9]. Various steps 
are discussed below.

Figure 1: Flow chart of a Biomedical analysis system [9].

Fundamental Process of Biomedical Image Analysis

Image analysis usually involves several steps for measuring 
various features within the image. After image acquisition the 
first step is background correction, identification of objects from 
background, separation of individual objects by segmentation and 

finally feature extraction from selected objects [4]. Various steps 
are discussed below:

Image Acquisition and Storage: The images are usually 
captured in the 12-bit range (so that images have 4096 shades of 
intensity) and stored in a lossless format like TIF or BMP for storage. 
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However, images can also be acquired and stored in image formats 
supporting more (14, 16, 24 or 48) bits. To improve handling, 
images containing multiple color channels, frames of a time lapse, 
Z-stacks of images, or montages of images can also be grouped in 
one image format (e.g. TIF format).

Image Processing: Before features can be extracted from an 
image, it requires to be cleaned of any systematic (e.g. uneven field 
illumination, optical aberrations, focus failures, etc.) or random 
errors (variations in the number of observed photons stimulating 
a dye molecule, number of dye molecules, electrons emitted per 
stimulation, etc.) using methods like “rolling ball” methods [4]. This 
helps in distinguishing the real signal from the background. 

Image Segmentation (or Object identification): Image 
segmentation is the process of determining meaningful regions or 
objects in an image. It involves determination of boundaries of some 
specific targets or prospects in the image (that have some specific 
properties) to differentiate these objects from the background 
using automatic or semi-automatic approaches. The accuracy of 
this step directly affects the accuracy of the rest of the analysis. 
Various algorithms have been used for image segmentation, 
handling border objects and to define secondary or tertiary objects. 
The simplest method for image segmentation is thresholding 
however more sophisticated algorithms generally used include 
Otsu thresholding [10, 11], Watershed [12], and GrabCut [13]. 

Feature Extraction: Usually, ‘feature extraction’ means 
measuring number, size, shape, intensity, texture, kinetic 
measurements, etc. of a cell or object from an image. The specifics 
for each feature may vary between manufacturers and platforms. 
Then, the intensity (number of photons captured) for a selected 
feature (single pixel, set of pixels, or an object) is determined and 
reported. The feature intensity is reported as “Total” and “Mean” 
intensity units. These measurements can also help in quality 
control assessment for example, “nuclear area” and “nuclear 
intensity” can help in identifying apoptotic, necrotic or dividing 
cells as each of these types of cells have a distinct characteristic 
nucleus. The coordinate (XYZ position) measurements of various 
features (cells) can help in predicting infections, autophagy and 
other phenomena. Regions or compartments within or around a 
cell can be distinguished using secondary object algorithms. Sub-
regions (like lipid rafts, ribosomes, micronuclei, mitochondria, actin 
or tubulin strands) can also be identified as puncta (or spots) and 
measured in a similar manner. In fact, this quantitative information 
on different features from every cell in the imaged samples leads to 
a lot of multi-dimensional (multiple parameters) and hierarchical 
data which is impossible to be analysed further manually. This 
means that image-based analysis is inherently multiplexed and 
can provide a large amount of quantitative information from an 
image [14]. Therefore, highly advanced software packages have 

been developed for automated image analysis to obtain reliable 
results in much shorter time periods. In fact, the manufacturers of 
various image acquisition instruments provide their own dedicated 
image processing software. However, compared to various software 
available under free licences, these commercial programs may not 
be as flexible to allow more complex image manipulations [15]. 
Below we describe a few of the most popular ones.

AI tools and platforms

Even though it is difficult to compare the expertise of a trained 
biologist with a software yet working with many samples manually 
is time-consuming, subjective, and non-quantitative [16]. Therefore, 
image analysis by cell segmentation and feature extraction using 
software like CellProfiler [14], Matlab, Labview or ImageJ [15] 
have become well-established steps for more than a decade. 
However, the analysis and interpretation of multi-parametric 
cellular descriptors is a more challenging task. It requires powerful 
statistical and machine learning methods and can be facilitated by 
the possibility of producing visualizations of intermediate results, 
by the automation of complex workflows such as cross-validation or 
parameter searches, and by easy access to biological metadata and 
genomic databases. Therefore, an acute rise was observed in the 
implementation of artificial intelligence solutions across various 
industries. This rise in AI solutions has only been possible due to 
the availability of increased computational power and availability 
of training datasets like ImageNet [17] and MNIST (modified NIST) 
[18]. The availability of a large amount of input data for training 
has led to an increasingly accurate AI based solutions. Nonetheless, 
it requires image processing, manipulation, and finally image 
labeling. The results from image analysis are usually presented 
as a figure with statistical information. Both, freely available and 
commercial software, are available for quick analytics. Some of the 
popular examples include R language (http://cran.r-project.org/), 
CellProfiler (http://ww.cellprofiler.org/), MATLAB (http://www.
mathworks.com/products/matlab/),andTIBCOSpotfire(https://
www.tibco.com/products/tibco-spotfire). Other software that 
have been implemented for AIA include Image-Pro® Plus (Media 
Cybernetics, Silver Spring, MD), Metamorph® (Universal Imaging, 
Downingtown, PA), and Visilog (Noesis, France). These have been 
available for small-scale human-interactive research imaging 
fluorescence microscopy for many years. These software products 
helped establish image processing and analysis as a valuable tool 
for cell and molecular biologists. The open architecture allows 
the incorporation of powerful software tools available from other 
vendors such as Spotfire (Somerville, MA) DecisionSite®, IDBS 
(Guildford, UK) Activity Base, and MDL® ISIS (MDL Information 
Systems, San Leandro, CA). CellSpace Knowledge Miner. 

MATLAB® 

MATLAB® is a programming language used by engineers and 
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scientists to analyze and create systems and products that make 
a difference [19,20]. At the core of the program is the MATLAB 
language, a matrix-based language that provides for the most 
intuitive representation of computer mathematics. Scientists 
and engineers in the biotech and pharmaceutical industries use 
MATLAB® and Simulink® for cross-disciplinary data analysis and 
end-to-end operations.

Scientists and engineers may use MATLAB to: 

•	 Hybridize data from various data sources, such as signal, 
picture, text, and genetic

•	 Process engineering to optimize pharmaceutical 
manufacturing 

•	 Modeling and simulation for drug research and 
development 

•	 Design, create, and deploy code to control new medical 
equipment

•	 Generate automated output reports in Adobe Acrobat, 
Microsoft Word, and PowerPoint.

Additionally, MATLAB® and Simulink® allow engineers to 
accelerate the development of medical device software and 
hardware by integrating and automating the many steps of 
design, implementation, and verification [21].

•	 Develop and test complex algorithms and whole systems 
prior to implementation 

•	 Use static analysis to detect software defects and establish 
accuracy of your models and code

•	 Prototype designs and generates proof-of-concepts by 
automatically producing real-time code.

ImageJ

ImageJ is the world’s fastest pure Java-based open-source image 
processing program capable of reading most of the image formats 
used in biomedical research [22]. It can perform a wide variety of 
tasks ranging from common image operations (e.g. convolution, 
edge detection, Fourier transform, histogram and particle analyses) 
to advanced operations on individual pixels, image regions, whole 
images and volumes (like dilation, erosion and closing of structures, 
and other mathematical operations on image sets). It is a truly 
versatile program that, being open source, incorporates more than 
500 user-written plugins (like NeuronJ, VolumeJ and NucleusJ 
[22-24] and macros developed by a strong user community (more 
than 1700 users/developers). ImageJ supports automated image 
segmentation, iterative deconvolution, co-localization analysis, 
time course processing and other analyses using various plugins 
for a single file or batch processing (using macros). Indeed, ImageJ 

has become an invaluable tool for image processing and analysis 
for microscopy labs and facilities alike [22]. There are numerous 
variants of ImageJ and NIH Image (ImageJ precursor) available 
these days [7]. ImageJ2 is the next generation version of ImageJ that 
provides a host of new functionality mostly to support the growing 
sophistication and complexity in image acquisition [25]. ImageJ’s 
functionality is further enhanced by a collection of mathematical 
morphology methods (for 3D image analysis) and plugins available 
as MopholibJ library [26]. MorphoLibJ can be used to obtain features 
like maximal enclosed ball and geodesic diameter along with 
quantified spatial organisations and neighbourhood relationships 
between labelled regions.

Fiji

Fiji is a biological-image analysis-focused distribution of 
the popular open-source software ImageJ. To facilitate quick 
development of image-processing algorithms, Fiji employs current 
software engineering principles to integrate strong software 
libraries with a diverse set of scripting languages [27]. Fiji makes 
it easy to convert novel algorithms into ImageJ plugins that can be 
shared with end users via an integrated update mechanism. Fiji’s 
core algorithms may be used in a variety of scripting languages 
common to bioinformaticians, making it easier to prototype novel 
bioimage solutions. Furthermore, Fiji has a strong distribution 
mechanism that guarantees new algorithms reach its large user 
base as quickly as feasible, kicking off an iterative refining process 
based on communication between engineers and users [28,29]. 
In essence, Fiji is intended to be a software-engineering system 
in which the computer science and biology research communities 
may collaborate to develop algorithms into useable applications for 
answering biological research issues.

Cell Profiler

CellProfiler was the first free open-source software package 
capable of handling and analysing thousands (high-throughput) 
of cell images for both standard and complex morphological 
assays [14]. Its source code was written in MATLAB language. It 
includes several standard methods for illumination correction to 
address illumination variation. For cell identification in clumped 
cells, it uses an improved propagate algorithm to determine the 
borders [30]. Standard measures like area, shape, intensity, texture, 
saturation, and blur can be easily determined for stains, cells or 
subcellular compartment along with complex measurements like 
Zernike shape features and Haralick and Gabor texture features. 
It is easy to create an image analysis “pipeline” (comparable to 
the macros of ImageJ) for image processing function involving 
steps like illumination correction, object identification, and object 
measurement using point-and-click graphical user interface (GUI). 
Since version 2.0, it was ported from MATLAB to Python language 
and Cython compiler was implemented that allowed using ImageJ 
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plugins within a CellProfiler pipeline [31]. CellProfiler can also 
run headless (without calling GUI) on Linux using command 
line switches to specify input, output and other parameters for 
analysis. A companion software, CellProfiler Analyst [32], can learn 
to identify challenging phenotypes of our interest using machine 
learning algorithms that work further on results from CellProfiler 
[33-35]. The third release (v3.0) of CellProfiler can run on the 
cloud structure, analyse (high-throughput) 3D images, and use 
Convolutional neural networks for deep learning [36]. Distributed-
CellProfiler is a series of scripts that help run CellProfiler on a 
cluster environment [37].

R language for AIA

By combining powerful statistical and machine learning 
methods, R language can be used for signal processing, statistical 
modeling, machine learning and data visualization [38]. For 
example, to perform advanced image processing and analysis 
using R language, the magick package can be used [39]. It wraps 
the ImageMagick ST library, one of the most comprehensive open-
source image processing library available today, that can work 
with more than 200 different image formats. The image processing 
power of magick has been implemented in R packages to segment 
cells and extract quantitative cellular descriptors. Some R/
Bioconductor packages are described below in the context of AIA:

RImageJ: The RImageJ package for image analysis was developed 
by Romain Francois & Philippe Grosjean as an integration of ImageJ 
and R through rJava (an R-to-Java interface) [40]. Additionally, Paul 
Murrell’s code allowed using images as raster objects under the 
RImageJ package. Though, in the absence of further development, 
it has been removed from the CRAN repository and archived here. 
Yet, it deserved a mention here to indicate that there can be several 

ways of implementing R language for advanced image analyses.

EBImage: EBImage package can be used to extract quantitative 
cellular descriptors [38]. Signal processing, statistical modeling, 
machine learning and visualization with image data are possible 
with EBImage in combination to other R based tools.

ImageHTS: imageHTS is a package designed to analyse high-
throughput microscopy-based screens and to operate in distributed 
environments [41]. It can segment cell images, extract quantitative 
cell features, predict cell types and browse screen or remote data 
through web interfaces.

Cellprofile-r: CellProfileR package acts as an R language 
interface to the CellProfiler and CellProfiler Analyst databases to 
easily quantify phenotypes from thousands of images automatically. 
A number of convenience functions and workflows are available 
for sophisticated downstream analyses. It can be obtained from 
https://github.com/afolarin/cellprofile-r. 

Modalities in Image Analysis

Research in the area of developing technical tools and solutions 
in order to strengthen the traditionally available medical modalities 
has been successful to quite some extent. However, the available 
solutions are insufficient for various radiological applications, 
primarily because the biomedical image analysis lacks consistency 
due to different image processing techniques with variable and 
complex nature of resolution [42, 43]. The revolutionary research 
with the discovery of X-rays by W.C. Roentgen in 1895 [44], laid the 
foundation of Biomedical imaging. This was influential in robust 
development of computed Tomography scanners in 1970 [45], and 
thus computers integrated the field of medical science and clinical 
practice. The different medical modalities and their characteristics 
have been mentioned comparatively in Table 1.

Table1: Comparative analysis of different Biomedical imaging modalities [9, 46].

S. No. Modalities X-Rays CT MRI Ultrasound PET SPECT

1 Main 
characteristics

Image obtained 
through the use 

of X-rays.

Scanning is done 
using X rays and 
later computer 

is used to 
construct a 

series of cross-
sectional images

Uses magnetic 
signals and 

Radio waves to 
create image 

slices.

Uses high 
frequency 

sound signals to 
image internal 
structures such 
as organs, soft 
tissues and un-

born baby

PET is a type 
of nuclear 
medicine 

Technique in 
which tracers 
are used for 

diagnosing the 
disease

A non-invasive 
technique for 
constructing 

cross-sectional 
images using 
radio-tracer 
distribution 

inside the body

2 Advantages
Quick, non-
invasive and 

painless.

Tomographic 
acquisition 

eliminates the 
superposition 
of images of 
overlapping 
structures

No short term 
effects are 
observed

US scanning is 
noninvasive, 

painless, 
safe and less 

expensive

More effective 
to distinguish 

Between benign 
and malignant 

tumors in single 
imaging

Images free of 
background, 

confirm neuro 
degenerative 

diseases 
(Alzheimer’s, 
Parkinson’s).
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3 Disadvantages

Overlapping 
of structures 

create 
difficulty for 

interpretation, 
it cannot pass 

from bone.

High dose per 
examination, 
compared to 
plain X-ray 

which would 
cause cancer in 

future

Strong magnetic 
field may cause 
Claustrophobia 

disease

Image 
interpretation 

depends on 
skill of the 
radiologist. 

Highly prone to 
noise

The gamma ray 
exposure may 
cause allergies 
in some people

Creates blurring 
effect.

4 Spatial 
Resolution High High High High SR SR is limited

5 Contrast Low High High

6 Application Anatomical Anatomical 
Functional

Anatomical 
Functional

Anatomical 
Functional

Anatomical 
Functional Functional

7 Cost Low- cost Intermediate 
cost

Intermediate 
cost Low-cost High High

8 Radiation source 
& type X-rays (ionizing) X-rays (ionizing)

Electric & 
Magnetic fields 
(Non-ionizing)

Sound waves 
(Non-ionizing)

Positron 
(ionizing)

Photons 
(ionizing)

CAD – A Pathological Solution

The fundamental scope in all disciplines of biomedical 
applications is an integral part of image acquisition and analysis. 
In order to begin with any task of screening, diagnosis, drug 
development, molecular level studies and even developing 
personalized treatments, etc., the visual aspect of information 
is of absolute importance [46,47]. Accounting to the various 
image modalities that are offered to the scientists or specialists, 
the time and effort demanded is appalling. This further leads 
to underutilization of available visual information. Therefore, 
computer – aided solutions provide an edge in the process of 
image analysis. In light of research over the years, along with 
the availability of massive data, new computer – based solutions 
have revolutionized the experience of data interpretation which 
mainly include, Big Data and Deep learning [48, 49]. The later 
has dramatically advanced the analysis of images and videos to 
a potential of transformed computer-aided diagnosis. Moreover, 
extensive research and development in neural algorithms and 
softwares with the availability of large annotated biomedical 
imaging datasets, have improved segmentation of molecules, cells, 
lesions, nodules, tumors, organs and other structures of interest. 
There are several advantages and disadvantages of AIA. In terms of 
advantage, the first one is that compared to manual image analysis, 
the implementation of computational resources helps us analyse 
large amounts of image data at a great speed. One of the concerns 
regarding manual image analysis is subjectivity in the results 
[50]. Subjectivity of results is dependent on human errors (due to 
tiredness or distraction) or differences in opinion during the data 
collection process. Another advantage is that computers work 
tirelessly, overnight or even on the weekends, with a consistent 
performance over time [51]. 

The setup optimization is performed only once and reliable 
results can be generated indefinitely from the algorithms. On 

the other hand, a naive user may face certain difficulties or 
disadvantages. These disadvantages include commercial software 
being expensive to buy, can be brand specific, require a certain time 
for training and optimization to obtain accurate results in image 
analysis. CAD has lead to various advancements in the field of 
Biomedical science and proved to be a great pathological solution 
to study different diseases which have been discussed in the next 
section.

Computer – Aided Advancements in Biomedical Imaging 

Malaria

Malaria is a fatal disease that is a leading source of infection 
across the world. Because of its high fatality rate, this epidemic 
disease has been documented throughout history. Malaria infections 
are increasing at an exponential rate, due to a variety of factors 
including a shortage of highly qualified experts in rural regions, 
data mismanagement, the widespread use of bogus and duplicate 
medications, the availability of low-cost diagnostic technologies, 
global warming, and more [52,53]. This communicable disease is 
a complicated, fast spreading infection that has become difficult 
to control due to the high number of malaria parasites. Malaria 
diagnosis is challenging, and the high density of blood smear 
microscopic pictures makes it impossible to distinguish between 
parasite and non-parasite infected patients [54]. The secret to 
obtaining an accurate result of infected parasite identification 
with the least amount of time, money, and effort is a challenge for 
research experts. Visual inspection has evolved as a revolutionary 
assistive software strategy in clinical medical imaging and 
decision aid in the previous several decades in the computer-aided 
diagnostic sector. Visual inspection of this worldwide disease, on 
the other hand, is subjective, time-consuming, and inaccurate. One 
of the well-known fundamental issues in separating stained blood 
smear microscopic picture components is the visual technique 
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for defining and recognizing malaria parasites [55]. The typical 
method of identifying malaria in a clinic is a laborious and time-
consuming task with a low likelihood of yielding an accurate result. 
In light of the aforementioned significant problems, computer-
aided diagnosis (CAD) has opened the way for more objective 
evaluation for individualized healthcare and diagnostics tasks. 
With effective time series management, the development of CAD 
has successfully bridged the gap between discriminative local 
appearances and the global picture context [56]. By annotating 
imaging data sets and identifying abnormalities under a variety 
of environmental conditions, CAD has had a significant influence 
on all patients and imaging modalities. CAD has challenges such as 
changes in size, shape, and intensity changes in imaging protocols 
of cell components in blood smear microscopic images. 

Several artificial neural networks with numerous layers have 
been developed in recent years for a variety of health diagnosis 
utilizing microscopic pictures, but Razzak et al. introduced a strong 
model called Deep learning, which revived the 1989 concept. Deep 
learning is a branch of machine learning that use hierarchical 
learning deep picture architecture to learn high-level characteristics 
from pixel intensities [57]. The deep neural network (DNN) 
architecture has many hidden layers, which is why the network is 
named deep. It may be used for both classification and regression 
applications. DNN is a new way to achieving outstanding results in 
a variety of applications, including dimensionality reduction, object 
segmentation, modeling textures, modeling motion, information 
retrieval, robotics, natural language processing, and collaborative 
filtering, among others. The total CNN model analysis and rigorous 
empirical assessment aid in the development of a high-performance 
CAD model for medical image tasks with good accuracy [58,59]. 
Many CAD investigations focused on the prognosis of malaria 
parasites and the direct distinction of parasites from non-parasites. 
For constructing an automated diagnostic system for malaria 
diagnosis, Das et al. employed SVM and Naive Bayes machine 
learning classifiers to obtain accuracies of 84 percent and 83.5 
percent, respectively [60]. Ross et al. developed an 85 percent 
accurate three-layer neural network as a classifier for automated 
malaria detection on thin blood smears [61].

Cervical Cancer

It is the second most common cancer in women with a higher 

incidence and mortality rate, which makes it a plausible concern 
for cancer management and diagnosis [62]. The development 
of a segmentation algorithm, based on statistical optimization 
clustering system to detect acetowhite epithelium regions, [63] 
which was then proceeded in the detection of acetowhite regions on 
the base of chromaticity with watershed algorithm [64]. This fueled 
the research and further Huang et al. detected the same region with 
color and brightness feature estimated in system Lab and HSV 
[65]. Gordon and coworkers, at Tel-Aviv University, developed a 
segmentation algorithm for three tissue types in cervical imagery 
(original squamous, columnar, and acetowhite epithelium) based 
on color and texture information [66]. The innovation of colposcopy 
has proved to be a promising technology in detecting cervical 
intraepithelial neoplasia. Together, combining CAD and colposcopy 
technology would create an automatic image diagnosis by detecting 
neoplasia tissue which would improve precision, accuracy and 
also reduce time consumption and efforts. Therefore, recent 
advancements in consumer electronics have led to inexpensive, 
high-dynamic-range charge-coupled device (CCD) cameras with 
excellent low light sensitivity. At the same time, advances in vision 
chip technology enable high-quality image processing in real time. 
These advances may enable the acquisition of diagnostically useful 
digital images of the cervix in a relatively inexpensive way, with or 
without magnification. Moreover, automated analysis algorithms 
based on modern image processing techniques have the potential to 
replace clinical expertise, which may reduce the cost of screening. 

The purpose of this study is to explore whether digital 
colposcopy, combined with recent advances in camera technology 
and automated image processing, could provide an inexpensive 
alternative to Pap screening and conventional colposcopy. Park, 
Follen, Rhodes, conducted a pilot study on MDC (multispectral 
digital colposcope) to acquire reflectance images of the entire cervix 
with white light illumination [67]. They employed the approach of 
AIA including image registration, pattern recognition, clustering, 
and classification. Moreover, they developed an algorithm that had 
a potential of identifying high-grade precancerous tissue areas 
from an entire image. They even constructed a gold standard for 
the entire cervical image using a whole cervix specimen acquired 
from a loop electrosurgical excision procedure (LEEP), which 
was intensively sectioned [68]. Figure 2 depicts the AIA approach 
employed to screen cervical neoplasia in patient samples.
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Figure 2: AIA approach for screening cervical neoplasia [67].

Skin Diseases

Since the 1990s, skin condition identification and categorization 
has been a preferred study topic. The majority of research in the 
literature is focused on skin cancer categorization, with just a small 
amount of effort focused on other disorders [69]. Researchers 
focus on multivariate clinically derived characteristics rather 
than photographs as a result of this constrained effort. Others 
that focus on image-based skin lesion categorization only look at 
a single disease. Guvenir and Emeksiz describe an expert system 
for the differential diagnosis of erythemato-squamous disease that 
incorporates three classifiers and achieves 99.2 percent accuracy 
using the voting feature interval-5 algorithm [70]. Ubeyli et al. 
developed a 97.7% accurate mixed neural network strategy for the 
diagnosis of the same disorders [71]. Chang et al. performed similar 
research, using a decision tree and neural network to categorize 
erythemato-squamous disease with a predicted accuracy of 
92.62 percent [72]. Using machine learning techniques, Xie et al. 
categorized erythemato-squamous disease with accuracy of 98.61 
percent [73]. In addition, Nugroho et al. developed a digital image 
analysis approach for identifying vitiligo in skin images [74]. The 
photos were pre-processed in the created system by using a low-
pass Gaussian filter to reduce specular reflection distortions. 
Because the suggested approach was only tested on 41 RGB photos, 

it lacks adaptability and generalizability. Only eczema is categorized 
as «mild» or «severe» based on extracted characteristics in Alam et 
al. study, with an accuracy of 93 percent for healthy images and 92 
percent for classified images in the first stage, and 80 percent for 
mild eczema and 93 percent for severe eczema in the second stage 
[75].

Guzman et al. also created and assessed a multi-layered 
system, and ANN was utilized to construct the single layered and 
multi-layered systems for eczema detection [76]. The single layer 
approach distinguishes between eczema and non-eczema images, 
whereas the multi-model method distinguishes between three 
forms of eczema: spotted, scattered, and dry eczema [77]. The 
extracted characteristics were subjected to ANN, which resulted in 
accuracy of 85.71 percent to 96.03 percent for the single-layered 
system and 87.30 percent to 92.46 percent for the multilayered 
system [78,79].

Perspectives and Conclusion
Biomedical image analysis is an interdisciplinary discipline 

that involves applying image processing techniques to biological or 
medical challenges. Medical images to be analysed include a wealth 
of information about the anatomical structure under examination, 
allowing clinicians to make accurate diagnoses and hence pick 
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appropriate treatment. These medical images are frequently 
manually analysed by doctors using visual interpretation. However, 
owing to differences in interpersonal interpretations, fatigue 
mistakes, and ambient disruptions, visual analysis of these images 
by human observers is restricted, and this type of analysis is 
essentially subjective. Automated analysis of these images utilizing 
computers with appropriate techniques, on the other hand, favours 
objective analysis by an expert, enhancing diagnostic confidence 
and accuracy of analysis. In the medical imaging sector, computer-
assisted analysis for better image interpretation has been a long-
standing challenge. On the image-understanding front, recent 
breakthroughs in machine learning, particularly deep learning, 
have made significant progress in assisting in the identification, 
classification, and quantification of patterns in medical images. The 
gains are based on using hierarchical feature representations learnt 
directly from data rather than handmade features largely generated 
based on domain-specific expertise.

Deep learning advances have thrown fresh light on medical 
image analysis, allowing for the discovery of morphological 
patterns in images entirely based on data. Because deep learning 
methods have reached state-of-the-art performance in a variety of 
medical applications, their use for further development might be a 
huge step forward in the field of medical computing.

Nevertheless, there is still opportunity for advancement. In the 
same way that breakthrough improvements in computer vision 
were achieved by utilizing large amounts of training data, such as 
more than 1 million annotated images in ImageNet, it would be 
one direction to create such a large publicly available dataset of 
medical images, by which deep models can find more generalized 
features in medical images, allowing for a performance leap. Also, 
while the data-driven feature representations, particularly in an 
unsupervised setting, helped improve accuracy, it is also important 
to create a new methodological architecture that allows domain-
specific information to be reflected or included.
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