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We obtained the expressions for Morse oscillator classical motion with explicit de-
pendence on initial coordinate and velocity. These formulas provide the easy compari-
son with results of numerical calculations, and in addition to previous considerations, 
they take into account the possible different sign of initial velocity of the oscillator. 
The analogy between the free motion of a Morse oscillator and motion of a particle in 
gravitation field (i.e. the Kepler problem) is drawn up. 
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Introduction
It is well known that the harmonic oscillator model can be em-

ployed for weakly excited mechanical systems. When excitation 
grows, anharmonicity begins to be noticeable and more sophis-
ticated models should be used. One of these models is the Morse 
oscillator which is especially useful for the description of diatomic 
molecule oscillations. For example, the experimental value of the 
dimensionless the anharmonicity parameter for the CO molecule 
is xe = 0.00612. The anharmonicity parameter serves as a measure 
of the deviation of the real oscillator’s discrete spectrum from the 
equidistant approximation. In the Morse model, xe = 0.00608, so 
the relative error is only 0.65%. The Morse model is mostly used 
in quantum mechanics. Particularly, the exact wave function of a 
particle in the Morse potential is well-known for many decades [1]. 
Classical applications of the Morse model are not so numerous. To 
our knowledge, the first work with the exact analytical solution for 
the Morse oscillator’s classical motion is paper [2]. This problem  

 
was also considered 30 years later [3]. In these papers, similar ex-
pressions were obtained while using slightly different approach-
es. Regardless of the abovementioned articles, we have also found 
analytical expressions for the free motion of the Morse oscillator 
[4]. Our formulas were obtained using the energy conservation law 
without solving any differential equations. They also were written 
in another form when compared with the results of [2,3]. Below we 
introduce our consideration of the problem which provides some 
additions to previous results [2,3]. Moreover, we demonstrate the 
analogy between the free motion of a Morse oscillator and motion 
of a particle in a gravitation field.

Definition and Main Characteristics of a Morse 
Oscillator

The potential energy of Morse oscillator is given [1] by the fol-
lowing formula:
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( ) ( ) ( ) ( ){ }xkxkDxU Morse −−−= exp22exp , (1)

where D  is the binding energy, k  is the parameter of the 

potential, x is the displacement of the oscillator’s coordinate 
from its equilibrium position. In the case of a diatomic molecule, 

errx −= , where r  and er  are the current and the equilibrium 
distances between the nuclei, respectively. While the displacement 

from the equilibrium position is small, when kx 1< , the Morse 
potential function transforms into the parabolic dependence. This 
relation of the potential energy on the coordinate is typical for a 

harmonic oscillator: ( ) ( ) { }122 −≈ xkDxU Morse . In Figure 1, 
the graph of the Morse potential energy is plotted using the param-
eters of a carbon monoxide (CO) molecule, together with its cor-
responding harmonic approximation. Comparing the graphs of the 
Morse potential and the harmonic potential energies, the Morse po-

tential energy’s asymmetrical shape is remarkable. This shape has 

the horizontal asymptote 0=U as x tends to infinity, kx 1>>
.This asymptote divides the energy spectrum of the oscillator into 

two parts: the positive part with 0>U and the negative part with 

0<U . The negative part of the spectrum corresponds to the os-
cillator’s finite motion, and on the contrary, the positive part of the 
spectrum corresponds to the infinite motion. When the motion is 
infinite, the coordinate increases indefinitely, and the oscillations 
turn into expansion. If we use the Morse potential energy to de-
scribe a diatomic molecule, the negative part of the energy spec-
trum will correspond to the oscillations of the atoms forming a mol-
ecule in a limited space. The positive part of the energy spectrum 
in this case will correspond to the dissociated state of the molecule, 
in which the distance between atoms grows up to infinity. Within 

such model, the binding energy D receives the meaning of the mol-
ecule’s dissociation energy. Hence, the Morse potential describes 
both the atoms oscillatory motion and their expansion.

Figure 1: The Morse potential energy plotted using the parameters of a CO molecule (solid thick curve) and its corresponding 
harmonic approximation (dash-dotted curve).

Free Oscillations of the Morse Oscillator
Consider the free motion of a Morse oscillator for given total 

energy ε  measured from the bottom of a potential well (Figure 
1). It is convenient to introduce a dimensionless displacement of 

the coordinate from its equilibrium position, xky = , and di-

mensionless time, t0ωτ = ( 0ω  is own frequency of the oscillator 
in harmonic approximation). In the future, for brevity, we will call 
these variables simply the coordinate and time.

Using such definitions, the Morse oscillator’s motion equation 
can be written as the following:

( ) ( )yyy −−−= exp2exp2τ
 .				  

		   
(2)

Note that the dimensionless Eq. (2) does not contain the 

binding energy D  and the parameter of the potential k , so it is 
universal for the given type of potential energy. To determine the 
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dependence ( )τy , it is convenient to use the law of conservation 
of energy, which in dimensionless variables can be written as the 
following equation:

( ) ( ) 1~exp22exp2 −=−−−+ ετ yyy , (3)

where Dεε =~  is dimensionless energy. Here, the first 
term on the left side of the equation corresponds to the kinet-
ic energy, while the second and the third terms represent the 
potential energy. The solution of (3) depends on the magnitude 

of the dimensionless energy ε~ . Three cases, which correspond 
to three motion modes, can be differentiated: the first one, when 

0~1 >> ε , the second, when 1~ =ε , and the third, when 1~ >ε
. Below it will be demonstrated that the first case corresponds to 
the finite motion, i.e., oscillations of the Morse oscillator, while 
the latter two cases correspond to the infinite motion, i.e., the 
expansion mode. For a finite movement which corresponds to the 

oscillatory mode, 0~1 >> ε . Solving (3), the following depen-
dence is obtained [3, 4]:

( ) ( )∫ ′−−′−+−
′

=−
y

y yy
yd

0
2expexp21~0 ε

ττ
,				  

	                                       

(4)

where 0τ  is the integration constant (which we will later 

assume is zero) and ( )00 τyy = .

The (4) yields the dependence ( )τy  in an implicit form. To 

obtain the explicit form of the function ( )τy , the integral on the 
right-hand side of (4) needs to be calculated and then y needs to 
be expressed via the dimensionless time τ . The resulting formula 
is

( ) ( )[ ]








−
+−±−

=
ε

εϕτεετ ~1
,~~1sin~1ln 0yy

, 

(5)

where

( ) ( ) ( )






 +−

=
ε

εεϕ ~
1exp1~

arcsin,~ 0
0

yy
   

(6)

is the initial phase of the oscillations dependent on initial 

displacement ( )00 == τyy .

The sign in front of the square root depends on the sign of 

initial velocity of the oscillator ( )00 == τyy  .

The resulting expression is valid while the dimensionless ener-

gy 0~1 >> ε . This corresponds to the negative part of the energy 
spectrum. The harmonic approximation is valid for low excitation 

energies of the Morse oscillator, i.e., for 1~ <<ε  ( D<<ε ). The 
Eq. (6) then turns into the well-known expression for free oscilla-
tions of a harmonic oscillator. Using the dimensionless variables, it 
can be written in the form:

( ) ( )ϕτεετ +≅<< sin~1~, y .  
(7)

From (5) and (7) it follows that the oscillation period for the 
Morse oscillator depends on the energy and is given by the expres-
sion

( )( )
εω

πε ~1
2

0 −
=MorseT

. 					   
      

(8)

Figure 2: The Morse oscillator’s motion for various values of dimensionless energy:  1.0~ =ε  (solid curve),  3.0~ =ε  (dotted 

curve), and  6.0~ =ε  (dashed curve) and for the negative initial velocity.
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It should be noted that this is the period of anharmonic 
oscillations. The motion of the Morse oscillator, defined as the 
dependence of the dimensionless coordinate on the dimensionless 
time, are shown in (Figure 2) for different values of the dimen-
sionless energy. It is noticeable that when the energy is low, the 
oscillations are symmetrical in accordance with the Eq. (7) which 
describes the harmonic oscillator’s motion. With energy increas-
ing, the amplitude of oscillations scales up, the motion becomes 
asymmetric and anharmonic and oscillation period increases. This 
anharmonicity is explained by the Morse potential energy’s asym-
metry with respect to the equilibrium coordinate (x = 0 in (Figure 
1)) – this asymmetry does is not exist in the harmonic oscillator’s 
potential energy.

Infinite Motion
The Eq. (8) suggests that with the increasing energy, the peri-

od also increases, and with D→ε , ( ) ∞→MorseT Thus, upon 
reaching the boundary of the negative part of the spectrum where 

1~ =ε , the periodic movement of the Morse oscillator becomes 
aperiodic. The law of motion for the energy laying on this bound-

ary, D=ε , following from (4) in the dimensionless variables is 
given by the following formula:

( ) ( )( )












 −±+=

2

0 1exp21
2
1ln yy ττ

, 
(9)

where ( )00 yy =  is the value of the dimensionless coordi-

nate at the initial moment of time. It is required that 2ln0 −≥y  
so that the radicand in the right side of equality (9) is non-neg-
ative. The sign plus in (9) relates to positive initial velocity and 
sign minus to the negative one. When the time tends to infinity, 

∞→τ , the dimensionless coordinate of the Morse oscillator for 

1~ =ε  increases logarithmically: τln∝y . In this case, obvi-

ously, the dimensionless velocity ττ 1→y , i.e., it decreases to 
zero at the infinity, so that the oscillator’s energy reduces to zero. 

For the energies in the positive part of the spectrum where 1~ >ε
, the calculation of the integral in (4) leads to the following law of 
motion:

( ) ( ) ( )[ ]
( ) ( ) 






 −+

=
τ

ττ
v~-exp,v~v~2

1v~-exp,v~v~ln
0

2

2
0

2

yA
yAy

,  

(10)

Figure 3: The Morse oscillator’s infinite motion for various dimensionless energies and different signs of initial velocity: solid 

curve –  1~ =ε , 00 <y  , dotted curve –  1~ =ε , 00 >y ; dashed curve –  5.1~ =ε , 00 <y , dotted-dashed curve –  5.1~ =ε

,  00 >y .
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where

( ) ( ) ( ) ( ) ( )00
2

00
2

0 2expexp2v~expv~1expv~,v~ yyyyyA −−−+±+=   (11)

is the constant determined by the initial conditions, and 

1-~v~ ε=  is the dimensionless velocity at infinity. Upper sign 
in (11) corresponds to negative initial velocity and lower one to 
the positive initial velocity. From the (10) it follows that when time 

tends to infinity ( -1v~>>τ ), the oscillator’s coordinate τv~∝y
. This suggests that when the Morse oscillator’s total energy is 

positive, i.e., when 1~ >ε , the expansion happens linearly in 
time. The time dependences of the Morse oscillator’s infinite 
motion are demonstrated in Figure 3. For these graphs, the initial 

coordinate is assumed to be equal to zero, 00 =y . The solid 

and dotted curves for 1~ =ε describes the scattering according to 

the logarithmic law of (9) for a sufficiently long time, 3≥τ . In 

this case, 0→y  for ∞→τ , and the energy vanishes at the 
infinity. The dashed and dotted-dashed curves correspond to the 

expansion for relative energies greater than one, 1~ >ε . It can be 

seen that in these cases the dependence ( )τy  becomes linear 
when time tends to infinity, i.e., the movement occurs at a constant 
speed. This follows from (10), as mentioned above. For the neg-

ative initial velocity, the function ( )τy  has a minimum. Further 
analysis shows that with the increase of the initial coordinate, this 
minimum shifts to the larger values of τ. It should be noted that 
for the comparison of analytical formulas with numerical solutions 
for infinite motion one can use the following initial conditions for 

velocity: ( ) ( )000
~1~~, yuyy −−= εε , for the given energy 

ε~ and coordinate 0y ; here ( ) ( ) DkyUyu 00
~ =  is normalized 

potential energy as a function of dimensionless coordinate.

Analogy with the Kepler Problem
The three described modes of Morse oscillator’s one-dimen-

sional motion have an extended analogy in the three-dimensional 
case. Their counterpart is the motion of a particle in a three-di-
mensional Coulomb attraction field or in a gravitational field. Any 
movement in such a field can occur in three modes: in an ellipse 
when the energy is negative, in a parabola when the energy equals 
to zero, or in a hyperbola when the energy is positive. This motion 
is known as the Kepler problem. The role of the dimensionless 

energy Dεε =~  in the case of the Kepler problem is determined 

by the square of the orbit’s eccentricity 2e : 

ε~2 ↔e .  (12)

Indeed, in the Kepler case, the total energy 12 −∝ eEK

, while in the case of the Morse oscillator, 1~ −∝ εME . As it 

is known [5], when 12 <e , the movement occurs on an ellipse, 

when 12 =e  – on a parabola, and when 12 >e  – on a hyperbo-

la. It is obvious that in this model, 0>e . These movement types 
are in accordance with the abovementioned Morse oscillator’s free 
motion modes. For the period of motion along an ellipse, we have 

( ) ( ) ( ) 2/321 −
−∝ eeT Kepler , and for the period of Morse oscilla-

tions, we have ( ) ( ) ( ) 2/1~1~ −−∝ εεMorseT . When the eccentricity 
or the dimensionless energy approaches one, the period of motion 
tends to infinity for both models, although according to different 
laws. We would like to also note that if the eccentricity is zero in 

the Kepler problem, 0=e , the motion happens along a circle. 

However, if 0~ =ε , the coordinate of the Morse oscillator turns to 
zero in accordance with the (5). The circle in the Kepler problem 
converts into a single point for the Morse oscillator. When moving 

along a hyperbola when 0>KE , we have the following asymp-
totic dependence for the radius vector in the Kepler problem when 

time tends to infinity: ( ) tmEtr K2→∞→  (here m is 
reduced mass of Kepler problem). The movement hence occurs 
at a constant speed, same as in the expansion case for the Morse 

oscillator when 1~ >ε , in accordance with (10). Thus, the free 
motion modes of the Morse oscillator for both oscillations and 
expansion can be considered as a one-dimensional analogue of the 
two-dimensional motion in the Kepler problem. These motions 
have the same qualitative dependencies, though are described by 
different formulas. It is worth noting that for both oscillations and 
expansion, relatively simple explicit expressions were obtained 
to describe the motion. This explicitness and simplicity are not 
always possible for other types of potential [4,5].

Conclusion
The analytical formulas describing the Morse oscillator’s free 

motion in dimensionless variables have been derived and analyzed. 
In addition to the previous results [2,3] we took into account dif-
ferent signs of the initial oscillator’s velocity. Further to that, our 
formulas explicitly depend on the initial conditions, which makes 
it easy to compare them with the results of a numerical solution 
to this problem. The study involved three motion modes: oscillato-
ry, infinite with zero energy, and infinite with positive energy. The 
analysis involved motion characteristics of each of these cases. For 
the oscillatory mode, the relation between the period of a Morse os-
cillator and its energy has been established. The analogy between 
the Morse oscillator’s free motion and the motion of a particle in a 
gravitational potential, i.e., the Kepler problem, has been demon-
strated.
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