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Immune-cell therapy and targeting therapy are in rapid development to treat 
tumor diseases. However, current immune-cell therapy and targeting immunother-
apy often face three challenges (three Ss): safety challenges such as cytokine releas-
ing syndrome (C.R.S.); specificity targeting problems such as low efficacy caused by 
off-targeting tumor cells; unsatisfying payment are confounded to clinical patients 
and physicians. We have been studying immunotherapy for more than thirty years, 
and recently, personalized immunotherapy to treat tumor disease has been proposed. 
After we discovered quiescent genes from immune cells within the tumor microen-
vironment, we set up single-cell genomics analysis, studying heterogeneous immune 
responses from multiple tumor antigens (neo-antigen); here, we further introduce a 
new generation of immunotherapy module by using a machine-learning model to as-
sess optimal immunotherapy. The machine-learning model combined with single-cell 
genomic analysis can predict optimal immune-cell (such as T-cells) and other optimal 
targeting drugs such as PD1 and CTLA4 inhibitors for the patient to use.

Keywords: Machine-Learning; Gene Expression; Pathway Analysis; Tumor-Infiltrat-
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Introduction
TILs (tumor-infiltrating lymphocytes) are a group of 

lymphocytes that engage and kill tumor cells in tumor tissues. As with 
other lymphocytes, the TIL consists of CD3+cell (CD8+T-cell, CD4+T-
cell), CD19 (B-cell infiltrating lymphocyte, BIL), CD16+/CD56+cell 
(NK cells) and other immune cells (macrophage and neutrophil) 
[1]. T.I.L.s, including CD8+T-cells, demonstrate characteristics of 
main immune surveillance in the tumor location, which has been  

 
specifically recognizing tumor antigens [2]. Moreover, we have also 
reported that CD8+T-cells from TIL displayed quiescent status and 
even lower response to tumor-antigen, which are obtained from 
pre-immunization induction. These cells, during quiescent periods, 
had no cytotoxicity and low proliferation potential, whereas they 
could be fully activated when exposed to IL-2 in vitro [3]. In our 
previous work [4], we employed single-cell genomics analysis 
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to elucidate the quiescent status of CD3+ (such as CD8+T-cells) in 
tumor microenvironments. By studying the quiescent TIL obtained 
from a solid tumor, we have identified a group of down-regulated 
genes, including T cell receptor (TCR), TNF-alpha receptor, TRAIL, 
and Perforin. More interestingly, we have observed a group of 
upregulated quiescent genes, including Tob [5], TGF-β, LKLF [6,7], 
SnoA, Ski, ERF, and REST/NRSF complex. The quiescent genes are 
discovered in the tumor microenvironment by Western blot and 
quantitative rtPCR analysis [4]. Furthermore, the observation of 
actively quiescent T-cells, including CD8+T-cells, is consistent with 
findings from other laboratories using genomic analysis and animal 
studies [5,6,8,9]. 

Since different inhibitors have been found to block immune 
responses to tumor cells in the tumor environment [8,10], it was 
further proposed that factors from the quiescent T-cells, such as 
PD-1 or CTLA-4, are actually one of the cores of immunotherapy [11]. 
Additionally, the tumor location is a place enriched with specifically 
activated lymphocytes, such as from an early monoclonal cancer 
stem cell (C.S.C.) into multiple differentiating tumor antigens 
within tumor cells, such as tumor-associated antigens (T.A.A.) and 
tumor-specific antigens (T.S.A.). T.A.A. consists of 

(I)	 Cancer-testis (C.T.) antigens, overexpressed antigens, 

(II)	 Differentiation antigens, and 

(III)	 Oncofetal antigen. T.S.A. contains neo-antigens and onco-
viral antigens such as HBV, EBV, CMV, and human papillomavirus 
(HPV) E6/E7 protein. In addition, neo-antigens have individual 
expressions for each patient, although shared neo-antigens 
have been increasingly discovered [12-14]. This background 
has guided us to set up personalized immunotherapy by single-
cell genomics analysis with the machine-learning model. 

This manual will use single-cell genomic data to address these 
questions combined with a machine-learning model. Machine 
learning is the study of computer algorithms, which can improve 
automatically through experiments with the use of data. As one 
of the artificial intelligences (A.I.) algorithms, here, our machine 
learning algorithms can build a model based on single-cell genomic 
data from quiescent genes of individual patients. It is called 
“personal trained data” from the tumor immune microenvironment 
(TIME) of each patient. The program can make predictions or 
decisions and then be used in personalized immunotherapy. The 
treatment module combined three sources: 

(I)	 Immune cell therapy such as T-cell immunotherapy, 

(II)	 Targeting immunotherapy, and 

(III)	 Other different immune therapy methods such as IL2 and 
TNF and so on. Using the machine-learning analysis, we can 
address three challenge issues (three Ss) of immunotherapy: 

Safety: avoiding cytokine releasing syndrome (C.R.S.); 
Specificity: targeting free off-targeting tumor cell resulting 
in low efficacy; Satisfying payment avoiding confounded to 
clinical scientists and physicians. This study will improve our 
understanding of artificial intelligence, the personal machine-
learning application for personalized immunotherapy, and 
provide a foundation for effective immunotherapy for tumor 
disease.

Materials and Methods
Immune Cell Isolation

Immune cells were isolated from tumors as described before 
[15-16]. Briefly, freshly procured tumor tissues were washed in 
phosphate-buffered saline, cut into small pieces, and digested with 
0.25mg/ml of collagenase IV at 4°C for 24 hours. Lymphocytes 
from tumor tissues and peripheral blood mononuclear (PBMN) 
cells were centrifuged in Ficoll-Hypaque solution at 500g for 30 
minutes and were recovered from the interface of cell suspension. 
CD3+cell (including CD8+T-cells), non-CD3+cells were isolated from 
the lymphocytes using magnetic anti-CD3+ microbeads (MACS 
technology, Miltenyi Biotech, Foster City, CA, U.S.A.) following 
the manufacturer’s recommendations. The purities of isolated 
CD3+T-cells were confirmed by fowl cytometry using FITC-labelled 
CD3+mAb/anti-CD8+mAb. The proliferation potential and cytotoxicity 
of activated TIL were measured as previously described [4]. 

R.N.A. Extraction

Purified immune cells were lysed in Trizol reagent (Invitrogen, 
Carlsbad, CA), and total R.N.A. was extracted using the RNA 
easy column (Qiagen, Valencia, CA). Briefly, CD8+T-cells were 
homogenized in Trizol before the phenol-extracted aqueous layer 
was mixed with chloroform. The aqueous layer from chloroform 
extraction was precipitated in 70% ethanol and further purified by 
passing through the RNA easy column. After sequential washing, 
total R.N.A. was eluted in RNase-free water. Isolated total R.N.A. was 
quantified, and its integrity was confirmed on an R.N.A. denaturing 
gel.

cRNA Synthesis

1ug of total R.N.A. was used to prepare biotinylated antisense 
R.N.A. (cRNA) using Ambion’s Message AmpII-Biotin Enhanced kit 
(Ambion, Austin, TX) and Affymetrix’s GeneChip sample module kit 
(Affymetrix, CA). Briefly, total R.N.A. was converted to first-strand 
cDNA using T7 oligo dT primer. The R.N.A. template was removed 
from the D.N.A.: R.N.A. hybrid using RNase H before double-stranded 
cDNA was synthesized. Double-stranded cDNA was purified and 
used as a template to synthesize biotin-labeled cRNA by in vitro 
transcription. Purified biotinylated cRNA was fragmented at 94oC 
and used for gene chip hybridization.
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Microarray Hybridization

15ug of fragmented biotinylated cRNA was hybridized to Gene 
Chip Human Genome U133 Plus 2.0 Array. Following standard 
conditions described in Affymetrix protocol (Expression Analysis 
Technical Manual, Affymetrix, Santa Clarita, CA). Briefly, fragmented 
biotinylated cRNA was incubated with Gene Chip 133 plus 2.0 for 16 
hours at 45oC before the hybridized chip was washed and stained 
in an Affymetrix fluidics station. The processed array was scanned, 
and the Q.C. was performed using Gene Chip Operating Software 
(GCOS, Affymetrix, CA). Same specimens performed by RNA-seq 
will be reported separately (although all data from single-cell RNA-
seq will be presented by other manuals). 

Analysis of Gene Expression

After QC was performed, the expression profile of each sample 
was generated by Gene Chip Expression Console (Affymetrix, CA) 
and further processed and analyzed in dChip per the instructions 
[17]. Briefly, the dChip algorithm was used to summarize the gene 
expression profile on each sample, where each chip was compared 
to a reference chip for normalization in overall chip hybridization 
intensity so as to allow for comparison between different chips. 
Hierarchical clustering was performed using the same dChip 
software to examine the similarity of gene expression between 
different samples. The gene expression profile of each sample was 
filtered according to the default criteria of dChip. The expression 
values of genes of interest were listed and compiled. The filtered 
gene expression profile of each sample was imported into BRB 
Array Tool [18] for gene enrichment analysis in order to identify 
statistically significant gene sets that might be involved in the 
development of immune quiescence in tumors.

Machine-Learning Analysis

Once differential gene expression profiles of TIL cells from 
tumor tissue were analyzed, a couple of key genes were utilized for 
quiescent and active analysis by database list. Briefly, interaction 
data was gathered from a number of different datasets from our 
work described above. Machine learning was generated by using 
algorithms that we have published. All datasets with the Regulatory 
Connectivity and calculated Betweenness of each protein node 
within these networks were listed and compiled in the Cytoscape 
platform.

Three indices were used for machine-learning analysis: 
Betweenness Centrality (B.C.), Connectivity Degree (CD), and 
Clustering coefficient (CC). In detail, 

1)	 Input a pair of clinical genome profiles from genome 
diagnosis (including genome profiles CD3+cell (such as 
CD8+cell), non-CD3+ cells) into Cytoscape platform (plugin 
Reactome F.I. platform or plugin Mimi platform).

2)	 Collect a series of genes with a higher degree of BC., lower 
CD and lower CC, as genes with higher inducing to TIL cells and 
lower toxicity to T-cells.

3)	 Enter this genome into the T-cell therapy database (such 
as CD8+ for TIL, CD16/56+ for N.K., CD19+ for B.I.L., CD11b for 
TAM1/TAN1 and so on) and the Drug Genome Response 
Database (DGIdb) for immune targeting therapy or combined 
chemotherapy. 

The personal machine-learning design, performance and 
clinical information will be reported by another manual from 
single-cell RNA-seq based Machine learning. 

Results
Immune Cells Isolation and Gene Expression Analysis

Table 1.

Biomarker expression related to prediction for immune cell therapy

Source
Immune 

cell therapy 
prediction

Marker-1 Marker-2 Marker-3 Marker-4

Tumor Source

TIL CD8 CD4 CD3

BIL CD19 CD20

Functional TIL CD8 CD4 CD3 IL10 TGF-beta

TCR T- cell CD8 CD4 CD3

Macrophage 
(TAM1) CD11b CD68 IL4 IL13

Leukocyte (TAN1) CD11b

Source Cell Type Marker-1 Marker-2 Marker-3 Marker-4

Blood CAR T-cell CD8 CD4 CD3

TCR T- cell CD8 CD4 CD3
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DCCIK CD11b CD68 CD8

LAK CD8 CD4 CD3

CIK CD8 CD4 CD3

NK CD16 CD56

NKT CD16 CD56 CD3

Macrophage 
(TAM1) CD11b CD68

Leukocyte (TAN1) CD11b

DN CD8 CD4

			 

Figure 1.

Results and performance of immune cells and R.N.A. were 
isolated from tumors as our previous report. After total R.N.A. 
extract and microarray performance, Q.C. was performed using 
the Gene Chip expression console. Each gene chip was examined 
according to Q.C. standards, including scaling factors and range 
of percentage of presence. All three pairs of specimens from each 
patient passed the Q.C. test, while CD3+cell and CD3-cell from TIL 
with paring T-cell from PBMN as shown in (Figure A). As (Table 1) 
shows, further immune cells related to biomarker expression to 
discover the quiescence or activity according to gene expression 
profiles among the three pairs of samples. In a table list, the CD3+cell 
from TIL or CD3-cell or CD16/CD56, or CD11b presented quiescence 
or activity of gene expression. At the same time, peripheral blood 
of similar patients had quiescence or activity from PBMN of each 
patient as Table demonstrated that blue color is quiescence and red 
color is an activity for each immune cell. 

The expression values of quiescent-related and activity genes 
are summarized as a database list if significant changes of quiescent 
genes were upregulated in CD8+T-cells or CD16/56+ N.K. cell or 
CD11b (macrophage or neutrophil) isolated from patient tumor 
samples as compared with those of peripheral blood. For example, 

T.G.F. beta and REST were upregulated in CD8+cell higher expression 
section isolated from the tumor as compared with those of PBMN 
so that the quiescent status was upregulated in CD3+/CD8+cell which 
we can culture TIL as major cell therapy for the patient because the 
CD8 quiescent changes can play an important role to treat patient, 
individually.

Furthermore, the expression profiles of each chip were analyzed 
in Cluster analysis to investigate the potential enrichment of gene 
sets. In comparison with those of peripheral blood, quiescent gene 
profiles were upregulated in CD8+T-cells from TIL; This implies that 
most of the genes are still in active state tumor while active gene 
profiles were down-regulated in CD8+T-cells from TIL so that we 
can further confirm TIL (CD8) as major cell therapy for the patient 
because inducing the active genes can be significant changes and 
more function for CD8+T-cells to treat patient. 

Machine-Learning Analysis

The genes were entered into the Cytoscape platform for 
discovering in the network profiles of quiescent CD8+cells, or 
quiescent CD16/56+cell, or quiescent CD11b, including their seed-
proteins and their neighbors (which are derived) for a network. 
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All networks are displayed in a configuration in which one seed 
protein is involved in the network analysis. Three results include 
Betweenness Centrality (B.C.), Connectivity Degree (CD), and 
Clustering coefficient (CC). The clinical genome profiles from 
genome diagnosis (including genome profiles from PBMC and 
genome profiles from TIL including CD3+ cell such as CD8+cell, non-
CD3 cells indicate a higher degree of B.C., lower CD and lower CC, as 
genes with higher inducing to the immune cells for cell therapy and 
lower toxicity to the immune cells. The results also can cover other 
cell therapy such as N.K. cell (CD16/56), and macrophage therapy 
(CD11b). 

Prediction of the Combination of Immune Therapy 

Recently, two immune therapies are emerging: 

(A)	 Immune targeting inhibiting therapy such as PD1 or 
CTLA4 inhibitors and 

(B)	 CAR-T or TCR-T therapy. If we want to find the PD1 or 
CTLA-4 efficacy, we can put it into Drug Genome Response 
Database (DGIdb) to discover the immune targeting therapy. 

If we want to discover a new generation of cell immune 
therapy, such as CAR-T or TCR-T therapy, we can use the machine-
learning model to discover which cells are optimal.  If we want to 
find a combination, as shown in (Figure-B), therapeutic targeting, 
including drug targeting, and small molecule targeting, was used 
for the machine-learning analysis. After the machine-learning was 
analyzed, (Figure B) finds CAR-T and targeted therapeutic drugs 
and targeted molecules and links the genome expression profiles 
with targeted therapeutic drugs and targeted molecules. As the 
figure demonstrates, CAR-T therapy related to chemotherapy and 
targeting therapy are discovered to connect as a prediction for the 
patient individually.

Discussion
In this manual, after we set up single-cell genomic data to 

address the quiescent and active status of immune response for 
each patient, here we combined a machine-learning model to 
discover an optimal therapy for each patient. Machine learning can 
improve automatically through experiment data from individual 
genes so that the machine learning algorithms can be used in 
personalized immunotherapy. The treatment model also combined 
three sources: 

1)	 Immune cell therapy such as CD8+T-cells or CD16/56+ N.K. 
cell or CD11b (macrophage or neutrophil), with totally current 
thirteen immune cell therapy. 

2)	 Targeting immunotherapy with all clinical trial and F.D.A. 
approved drugs. 

3)	 All other different treatment such as HDACI or DNMA 

inhibitors so that we can use the machine-learning analysis 
to resolve three challenge issues from immunotherapy: safe 
treatment voiding cytokine releasing syndrome (C.R.S.); specific 
targeting treatment free off-targeting tumor cell; satisfying 
payment avoiding confounded to clinical patients for a higher 
payment. In the near future, we will report using single-cell 
R.N.A. seq data to mimic machine-learning with the results 
from clinical patients. Hopefully, it also will support machine-
learning to support personalized immunotherapy. 
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