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Radiomics is a new term in radiology that refers to the extraction of a large num-
ber of quantitative information from medical pictures. Artificial intelligence (AI) is a 
wide term for a collection of advanced computing algorithms that, in essence, analyze 
patterns in data to make predictions on previously unknown data sets. Because of its 
superior ability to handle large amounts of data as compared to traditional statistical 
methods, it can be combined with AI. We performed a comprehensive review of the 
available literature on studies investigating the role of radiomics and radiogenomics 
models in order to improve the prediction treatment response in non-small-cell lung 
cancer (NSCLC). The basic goal of these fields, taken together, is to extract and analyze 
as much useful hidden quantitative data as possible for decision support. Radiomics 
and Artificial Intelligence have been used extensively to characterize lung malignan-
cies. Furthermore, it has been successfully used to forecast side effects such as radia-
tion- and immunotherapy-induced pneumonitis, as well as to distinguish lung injury 
from recurrence. Our research interest in this paper is to provide an update on the 
current status of the use of radiomics and artificial intelligence in lung cancer, detect-
ing the existing gap in order to develop diagnostic, predictive, or prognostic models 
for outcomes of interest.
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Introduction
Radiomics is a new term for the area of radiology, derived from 

a combination of “radio,” which refers to medical imaging, and “om-
ics,” which refers to the numerous fields such as genomics and pro-
teomics that help us comprehend diverse medical diseases. Given 
the massive efforts to meet the unmet clinical need that still exists, 
it is predicted to have a significant impact on clinical practice in the 
near future in the domain of lung cancer. According to Word Health 
Organization (WHO), cancer is a leading cause of death worldwide, 
accounting for nearly 10 million deaths in 2020 [1]. Lung cancer is 
scientifically proven to be the most common cause of cancer-relat-
ed death worldwide; advances in early, potentially treatable diag-
nosis would have a significant impact on human health. As a result, 
lung cancer became the first malignancy for which radiomics have 
been used in clinical trials and so we can expect that Artificial Intel-
ligence (AI) will speed the clinical translation of lung cancer radio-
mics by attaining fully automated patient prediction. The goal is to 
extract quantitative and actionable information from images such 
as computed tomography (CT), magnetic resonance imaging (MRI), 
and positron emission tomography (PET) that are not easily visible 
or quantifiable with the specialist-radiologist eye, in order to build 
a model assessing clinical outcomes, including diagnostic, prognos-
tic, and predictive perspectives, to predict outcomes. 

Today, Artificial Intelligence provides a plethora of essential 
tools for intelligent data analysis, which may be used to solve a va-
riety of medical difficulties, including diagnostic ones. First of all, 
we have to explain the difference between the main terms of Arti-
ficial Intelligence (AI), Machine Learning (ML) and Deep Learning 
(DL). Artificial intelligence is the process of incorporating human 
intellect into machines via a set of rules such as algorithms. Ma-
chine Learning is the process that allows a machine to learn on its 
own and develop as a result of its experiences without having to 
be explicitly programmed, so ML is a subset or application of AI. 
Deep Learning is a subset of Machine Learning that uses Neural 
Networks (similar to the neurons in our brain) to replicate human 
brain-like behavior. DL algorithms concentrate on information pro-
cessing patterns mechanisms in order to find patterns in the same 
way that our human brain does and classify data accordingly. 

When compared to ML, DL works with bigger volumes of data 
and the prediction method is self-administered by computers. The 
most common kind of lung cancer is non-small-cell lung carcinoma 
(NSCLC), which accounts for more than 80 percent of all lung can 

 
cer diagnoses. In this paper, we summarize the present state and 
assess the scientific and reporting quality of radiomics research in 
the prediction of treatment response in non-small-cell lung cancer. 
There are numerous potential radiomic indicators of therapy re-
sponse in lung cancer described in the included reports; however 
there is a gap of clinical evaluation between the current statuses of 
the relevant studies. Our study focuses on the deployment of stan-
dardized features and software in a prospective scenario, as well as 
external validation. Radiomics, being a new and evolving medical 
instrument, continues to face problems that prevent its widespread 
usage in clinical practice. Despite these problems, there is a lot of 
research going on in the sector, which might lead to this new tech-
nological approach becoming an important therapeutic tool in the 
future. 

Radiomics

Radiomics is the extraction of usable data from medical imag-
ing that has been used in oncology to enhance diagnosis, prognosis, 
and clinical decision support with the objective of providing preci-
sion medicine [2]. This analysis might be viewed as a virtual biopsy 
tool, with the ability to detect and determine tumor phenotypes, 
thanks to technical advancements in AI, using various imaging mo-
dalities, such as CT, PET CT, and MRI. Its features derived from MRI 
can be an important tool even in limited patient population [3]. The 
workflow is interdisciplinary, comprising radiologists, data scien-
tists, and imaging scientists, and it involves tumor segmentation, 
image preprocessing, feature extraction, model construction, and 
validation in a sequential procedure. The distribution of signal in-
tensities and spatial connection of a three- dimensional grid (voxel) 
within a region of interest (ROI) are often described by extracted 
features. The idea is that imaging data can provide information 
about tumor biology, behavior, and pathogenesis that isn’t visible 
to existing radiologic and clinical interpretation [4]. Despite the 
fact that many of the principles of image feature extraction have 
been around for decades, the field’s research output has exploded, 
according to PubMed (www.pubmed.gov), with over 1500 articles 
using the phrase radiomics in 2020. It can be used with comput-
ed tomography, magnetic resonance imaging (MRI), X-ray, posi-
tron-emission tomography, and ultrasound, among other imaging 
modalities. This procedure begins with picture capture, the param-
eters and protocol must be carefully considered. A consistent set of 
picture acquisition procedures is desirable to extract features in a 
stable and repeatable way (Figure 1). 
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Figure 1: Graphic depiction of the radiomics workflow.

After the data has been collected and arranged, the regions 
of interest on the pictures to be studied are segmented. The ROI 
designates the area from which radiomics characteristics will be 
retrieved, and manual or semiautomatic segmentation by a com-
petent expert (e.g., a doctor) is presently the radiomics analysis’ 
rate-limiting phase. The process of calculating features is lengthy 
and complicated, resulting in inaccurate reporting of methodolog-
ical data (e.g., texture matrix design choices and gray-level discret-
ization approaches). A previous study found that higher order ra-
diomics features were related with substantial changes in features 
retrieved using different toolboxes, whereas histogram-based fea-
tures were the most repeatable [5]. The Image Biomarker Stan-
dardisation Initiative (IBSI) has created a standardized radiomics 
procedure, which is shown in (Figure 2). The IBSI intends to stan-
dardize both feature calculation and the image processing tasks 
that must be completed before feature extraction. A basic digital 
phantom was created for this purpose and utilized in Phase 1 of the 

IBSI to standardize the computation of several variables from many 
categories, including morphologic, local intensity, and statistical. 
A collection of CT scans from a lung cancer patient was employed 
in Phase 2 of the IBSI to standardize image processing stages uti-
lizing five distinct parameter combinations, including volumetric 
techniques (2D versus 3D), picture interpolation, resegmentation, 
and discretization methods [6]. Imaging data that is suitable for the 
research and meets the inclusion and exclusion criteria should be 
explicitly stated. To decrease unjustified confounders and noise, 
standard imaging techniques (i.e., those that employ the same 
vendor or scanner settings for all samples) might be used. Images 
should be anonymised to eliminate patient sensitive metadata after 
a cohort has been established. To prevent losing potentially valu-
able picture elements, images should be exported as Digital Imag-
ing and Communication in Medicine (DICOM) files using a lossless 
compressed format.
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Figure 2: A standardized radiomics procedure, IBSI.

Artificial Intelligence

Why AI in imaging? First of all, AI is non-invasive and easy to 
repeat and this is important as tumors are spatially and temporal-
ly heterogeneous, in addition there is the need for innovation. The 
fundamental rationale for AI’s use in radiomics is that it is better at 
handling large amounts of data than traditional statistical methods. 
The majority of AI algorithms are employed to solve classification 
problems. These algorithms basically analyze patterns in the data 
presented and then make predictions on unknown data sets to see 
if the patterns are right. AI algorithms are capable of analyzing not 
just the quantitative data provided by predefined or hand-crafted 
radiomic features, but also of analyzing images directly in order 
to generate its own characteristics. To improve generalizability, 
these methods can be paired with meta-classifiers or ensemble ap-
proaches like adaptive boosting and bootstrap aggregation. There 
are also additional ensemble learning approaches that combine 
many algorithms, such as k-nearest neighbors, naive Bayes, and tree 
algorithms, which are poor classifiers [7]. This advanced subset of 

AI is called deep learning. According to Giovanni L. F. da Silva et al 
[4], deep learning methods were useful in recognition of small lung 
nodules on CT, with an accuracy of 97,6%. Deep learning is a very 
prominent and advanced subset of AI [8]. These systems can also do 
segmentation tasks on their own, requiring no human intervention. 

As we mentioned it in the introductory of this paper - artificial 
intelligence can help in many ways in the healthcare sector - let it 
be diagnostic, therapy, drug development, patient workflow man-
agement or remote diagnosis. One of the most popular machine 
learning approach to tackle these problems is deep learning. The 
application of deep learning techniques and especially Neural net-
works for medical image segmentation received a great interest 
due to their ability to learn and process large amounts of data in 
a fast and accurate manners. What are Neural Networks? At a first 
sight we can see neural networks as black boxes where we are put-
ting in some data to the input and on the other end, we will get an 
analysis coming of the box - let it be segmentation, or a classifica-
tion for example. If we open this box we will see (in case of a fully 
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connected network) plenty of neurons and connections between 
them. Layers of neurons stacked on each other (Figure 3). Origins of 
neural networks were inspired by the human brain itself (however 
the network design used now is very loosely connected to it). These 

networks consist of neurons where the connection between them 
is modeled with weights. As we are moving forward in the network 
each output of a neuron calculated as the following:

Figure 3: Neural Network.

1 1 1( )a Wa bσ −= +
Where al is the output of the neuron at the “l”th layer, al−1 is the 

output of the previous layer called activations, W are the weights 
and b is called bias. Step by step as we are moving forward we will 
reach the end of the network, the output layer - the output of this 
layer will be the result provided by the network. At this point the 
network may have some error - the output is different from what is 
expected. To measure the difference we are using a mathematical 
function which is called loss function. Depending on the task we 
are trying to solve we may use different loss functions, and we may 
modify this loss function during the training. One good example for 
a loss function is a simple mean squared error (called MSE):
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Where n is the number of examples seen by the network, y is 
the expected output and y^ is the actual output. Now that we have 
numerical information about the error of the network we can try 
to mitigate it and optimize the network to for example in case im-
age classification - minimize it. The optimization method used in a 
neural network in deep learning is called backpropagation. We are 
propagating the error back from the output to the input - mean-
while updating the weights and biases in each neuron. If you are 
not into math - all you need to understand is that we are calculating 
how much a neuron is contributing to the final error and based on 
this number we are modifying its weight so the loss function will 
be optimized.

Tracing the Gap

Because of variances in patient demographic, cancer stage, 
treatment mode, and radiomics workflow technique, there is a lot 
of variability between current studies. The management of the pa-
tients would be different if the prognosis of the patients could be 
anticipated before any intervention or treatment. Precision medi-
cine is the term for this. Except for a few parameters like size and 
volume, imaging data sets are mainly analyzed visually or quali-
tatively in traditional radiology practice. This method not only in-
troduces intra- and interobserver variability, but it also ignores a 
significant amount of concealed information in medical imaging. 
The lesion is often manually demarcated by an expert radiologist or 
radiation oncologist in radiomics studies of lung cancer. Automatic 
or semi-automatic segmentation, on the other hand, improves re-
peatability and yields more stable characteristics than manual seg-
mentation. Because lung nodules might be small and appear simi-
lar to other structures in the lung, such as blood vessels or benign 
processes like localized organizing pneumonia, pulmonary imaging 
provides distinct problems to both radiologists and radiomics sys-
tems. As a result, CT-based lung cancer screening has a significant 
false-positive rate [9]. 

In positron-emission tomography (PET), when picture noise 
affects segmentation, a relative threshold method or variational ap-
proaches can be used to semi-automatically define lung tumors by 
attempting to utilize gradient differences between the foreground 
lesion and the background [10]. The basic goal of radiomics is to 
extract as much and meaningful hidden objective data as feasible 
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for use in decision support using either standard or sophisticated 
imaging techniques [11]. However, the limited replication potential 
of most current research can be partly blamed for the fact that AI-
based techniques have yet to be incorporated into normal practice. 
For medical imaging segmentation, there are a number of com-
mercially accessible software solutions. As a result, discrepancies 
in observers and software might lead to considerable variances in 
feature values. In radiomics analysis, interobserver variability has 
been somewhat addressed by employing characteristics that do not 
differ significantly among observers. This method, however, may 
result in the omission of characteristics that may help the predic-
tive/prognostic/diagnostic model.

Deep learning approaches have recently been used to construct 
auto-segmentation systems, and the results have been encour-
aging [12]. When it comes to software, the first decision to make 
is whether to utilize commercial or nonprofit software. Noncom-
mercial apps are usually free, constantly changing, and reflect cur-
rent research trends. Commercial programs aren’t free, but they’re 
more likely to be stable, come with technical assistance, and be a 
“black box”. Using free software applications that allow the export 
of radioactive properties with a graphical user interface is a slight-
ly more complex method. IBEX [13], LIFEx [14], and PyRadiomics 
[15] are some of the most widely used applications for exporting 
handcrafted features. However, radiologists should exercise caution 
when using these software programs because the pipeline is not 
well established in such programs, and there are numerous param-
eters to be dealt with, such as establishing discretization levels, nor-
malization approach, re-sampling, and clearing non-radiomic data 
from the final feature table. The aforementioned gap comes to fill 
our familiarity with coding skills. Following feature selection, inter-
esting models may be created using a variety of machine learning 
methods. Various modeling methods, ranging from basic decision 
trees or logistic regressions to more complicated random forests or 
Bayesian networks, are implemented in software such as R https://
www.gbif.org/tool/81287/r-a-language-and-environment-for-sta-
tistical-computing), MATLAB ttps://www.mathworks.com/), and 
scikit-learn (https://scikit-learn.org/stable/). 

The most popular platforms for this purpose are the various 
Python platforms, which have huge libraries for both handmade 
and deep feature extraction. Additionally, the Waikato environment 
for knowledge analysis (WEKA) [16], and Deep Learning Studio 
(https://deepcognition.ai/) are some software applications that 
can be used for this purpose, WEKA is capable of performing var-
ious ML tasks, however, its visual capabilities are restricted and 
poor until it is integrated with other settings. Currently, a wide 
range of acquisition methods are in use. Furthermore, numerous 
vendors offer a variety of image reconstruction methods, which are 
tailored to the needs of each institution. This is a problem not only 
on a multi- institutional scale, but also within a single institution. 

Although it is often overlooked or ignored in visual analysis, the use 
of various acquisition and image processing techniques may have 
a significant impact in deep learning because it is a pixel or vox-
el-level process that can affect image noise and texture, potentially 
reflecting a different underlying pathology [17]. 

Several research organizations have looked into using AI to 
predict treatment response, but it has yet to be put into clinical 
practice. Choosing the best method for model creation is a hot topic 
in academia right now. Recent works have been reported on auto-
mating the process of picking the optimal algorithm for a particular 
dataset [18]. Although algorithm selection appears to be random 
in the literature, the optimum approach would be algorithm selec-
tion based on several experiments. From a practical standpoint, we 
must realize that it is impossible to standardize all image capture 
procedures. Our major objective, on the other hand, should be to 
develop the optimal technological pipeline for creating the most 
stable and accurate AI models that can be applied to pictures col-
lected via various protocols.

Conclusions-Future Outlook
Radiomics is now regarded as a purely academic field. The 

aim of this narrative review is to report the recent literature, and 
to provide an update on the current status of the use of radiomics 
and artificial intelligence in Lung Cancer in order to develop diag-
nostic, predictive, or prognostic models for outcomes of interest. 
Before being used as a therapeutic decision-making tool to support 
individualised therapy for patients with lung cancer, promising AI 
models must be externally verified and their effect studied within 
the clinical pathway. The results must be confirmed using sepa-
rate data sets in order to be accepted in the clinical arena. Tech-
niques for internal validation can be applied. K-fold, leave-one-out 
cross-validation, and hold-out are the most frequent internal vali-
dation procedures found in the literature. The most essential issue 
to address in internal validation is the possibility of feature selec-
tion algorithm leaking across the data, which might lead to unduly 
optimistic conclusions. Conventional statistical approaches may 
be used to compare the validation performance of our AI systems. 
Despite the fact that the number of relative papers has increased 
exponentially, normal clinical adoption has yet to emerge [19]. Non-
compliance with machine learning best practices, standardization 
of its process, and unambiguous reporting of research methodology 
are all major roadblocks. Only then may models be evaluated using 
external real-world data, such as multivendor pictures and a range 
of acquisition procedures, ideally prospectively. 

In order to overcome these obstacles, data curation and quality, 
as well as suitable sample numbers, are essential. As researchers 
have shown, these systems can outclass humans while perform-
ing medical image analysis, they have been created to assist in 
improving predictive analytics and diagnostic performance, specif-
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ically to improve their accuracy and capacity to enable personal-
ized decision-making [20]. Curation of enormous datasets, on the 
other hand, requires a lot of time and effort, and gathering enough 
data from many institutions might be difficult. These issues can be 
addressed with the use of data exchange. Finally, while artificial 
intelligence is essentially a data-driven endeavor, a better under-
standing of the physiological significance of any generated radiomic 
signatures is necessary before the findings are widely accepted.

As a step further in our research, the treatment of lung cancer 
varies depending on the histologic type, cancer stage and the per-
sonal status; it includes surgery, chemotherapy and radiotherapy. 
The most common side effect of radiotherapy lung cancer is Ra-
diation Pneumonitis (RP) as a symptomatic toxicity caused by an 
inflammatory response to radiation. The likelihood of symptomatic 
RP could be reduced if it could be predicted early in the radiation 
therapy regimen. Radiomics can provide quantitative features from 
medical imaging [21]. In relation to the above, we develop a model, 
using Artificial Intelligence and emerging technology which allows 
us to have access to far more data than was ever previously avail-
able to it. Moreover, our laboratory will analyze the texture charac-
teristics of computed tomography as possible prognostic factors of 
RP. The high dimensionality of radiomic datasets is a major issue. 
Our proposed method in data problems is the synthetic minority 
oversampling technique in order to create a balanced dataset. We 
leverage suitable hardware and open-source software framework 
by Pytorch and other software solutions like DNN library.
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