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This paper calls for greater deliberate collaboration between basic scientists and 
engineers to advance our understanding of viral fate in wastewater treatment sys-
tems. Despite the fact that conventional treatment technologies and processes effi-
ciently eliminate SARS-CoV-2 from the final effluent, viral retention in the sludge re-
mains a concern. There is therefore a need to probe the physicochemical behavior of 
viral materials (using SARS-CoV-2 as model organism) in the wastewater matrix along 
the treatment train, such as envelope chemistry, partitioning dynamics and viral-bac-
terial interactions in the digester. Science needs to provide answers to fundamental 
questions to inspire more sophisticated engineering design thinking. 

Abbreviations: PCR: Polymerase Chain Reaction; WBE: Wastewater-Based Epidemi-
ology; DDPCR: Digital Droplet Polymerase Chain Reaction; UV: Ultraviolet

The Main Part
The recent COVID-19 pandemic which began in China back in 

December 2019 has been devastating to global health, economy, 
and institutions. In the years since it started, scientific innovation 
has been ramped up to limit the spread and impact of the vicious 
disease caused by SARS-CoV-2. Testing technologies were devel-
oped and quickly advanced – detection time reduced from days to 
just hours. From antigen to polymerase chain reaction (PCR) -based 
protocols, we mastered clinical surveillance of the disease. Then 
wastewater-based epidemiology (WBE) reentered the center stage 
because we needed to be faster, cover a wider population range 
and be several steps ahead of the virus. WBE has been effective in 
providing early warning of infection spikes and in the identifica-
tion of potential hotspots. WBE for COVID-19 surveillance relies 
on the fact that humans begin to shed the virus through their feces 
and urine even before the onset of signs and symptoms. Hence, the 
quantification of SARS-CoV-2 in wastewater allows us to assess the 
prevalence of the disease in both symptomatic and asymptomatic  

 
patients using WBE. Various molecular approaches have been de-
veloped to target and quantity specific viral markers. The state-of-
art technique, digital droplet polymerase chain reaction (ddPCR) is 
currently very widely applied to quantify SARS-CoV-2 nucleocapsid 
genes (N1 and N2). 

Biomarker information obtained from wastewater samples 
(copies of N1 and N2 per ml of wastewater) are indicative of dis-
ease burden within the “pooled” population. Mathematical and 
statistical approaches are used to model the relationships between 
WBE and clinical testing results. Exciting predictive models are 
beginning to emerge and scaled for broader spatial applicability. 
Wastewater based epidemiology, which is primarily a surveillance 
tool, is receiving the attention it deserves and will be critical to our 
ability to respond to future pandemics on a local and national lev-
el [1-3]. Since SARS-CoV-2 is released from human hosts into mu-
nicipal lines (Figure 1), the necessity arose to study their fate in 
wastewater treatment systems. This is not a new area of research. 
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The impact of various wastewater treatment technologies on mi-
croorganisms has been extensively investigated [4-15]. However, 
SARS-CoV-2 presented unique possibilities. Despite similarities to 
many other viruses, it has its distinct features deserving of tailored 
queries. So many questions needed to be answered. What happens 

to the viral particles in the wastewater matrix as they move through 
the various stages of wastewater treatment? How do the viral par-
ticles partition into the liquid and solid phases of wastewater? An-
swers to these questions are still at infancy but more conceptual 
than empirical. 

Figure 1: SARS-CoV-2 RNA entry route into municipal wastewater. All components of the figure were made using BioRender.
com.

For instance, there is enough evidence that wastewater treat-
ment processes, from primary separation to disinfection, are very 
efficient in eliminating SARS-CoV-2 genetic material from the final 
effluent. This means there is very little concern about effluent dis-
charged into natural water bodies. Most of the credit for this goes 
to disinfection, which is carried out at various facilities mainly by 
ultraviolet (UV) radiation and chlorination. These technologies de-
nature the viral protein capsid and its genome. However, some of 
the viral particles do not make it to the disinfection stage because 
they settle into the sludges generated during the primary and sec-
ondary processes. Recent studies suggest that the virus particles 
are mostly diverted to the sludge, and that SARS-CoV-2 RNA degra-
dation could also contribute to their absence in the liquid phase of 
wastewater after secondary treatment [4,5,13-21]. During waste-

water treatment, sludges are funneled into digesters where a num-
ber of biochemical processes take place. Anaerobic microorganisms 
break down complex organic materials to produce methane (CH4) 
which is siphoned off for use as biogas. The sludge is then dewa-
tered, converting it to biosolids. Questions regarding the physico-
chemical and biological dynamics of SARS-CoV-2 partitioning into 
wastewater solids, and how the viral particles respond to processes 
in the digester remain largely unanswered. 

And why is this a concern? Biosolids usually end up on land, 
most often recycled for agricultural purposes. They are rich in nu-
trients needed by both soil microbes and plants, therefore enhance 
ecosystem productivity. However, the retention of pathogens, in-
cluding SARS-CoV-2 in these biosolids, is a public health concern. 
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These pathogens could directly or indirectly end up in humans 
through consumption of crops grown in amended soils and con-
tamination of groundwater/surface water [22,23]. Therefore, en-
gineering design of wastewater treatment processes and systems 
have to evolve to address this concern. The benefits of powering 
through this demanding innovation will extend beyond the current 
COVID-19 pandemic. But then, science has to meet design for this 
endeavor to produce the desired outcome. It will take a transdisci-
plinary collaboration between chemists, microbiologists, ecologists 
and engineers. Fundamentally, science needs to provide answers 
to basic questions regarding virus (SARS-CoV-2)-wastewater dy-
namics to inspire engineering thinking. For instance, science needs 
to examine the viral envelope more closely within the context of 
wastewater treatment as opposed to clinical drug design. The SARS-
CoV-2 envelope is protein-based and contains glycoprotein spikes. 

How do properties of this envelope change in complex waste-
water matrices and what are the key determinants of this trans-

formation? What physical (e.g., buoyancy) and chemical (e.g., ionic 
interactions) parameters affect the partitioning of these viral par-
ticles between the solid and liquid phases? And how do they re-
late to the biophysical features of the viral envelope? Viral particles 
interact in several ways with ions and organic material present in 
wastewater. What influences these interactions and by what pre-
dominant mechanisms do they occur? Hydrophobic bonding, van 
der Waals, or ionic bridging? Do SARS-CoV-2 viral materials attach 
more strongly to specific types of organic materials? What prop-
erties do they possess? For instance, SARS-CoV-2 biomarker con-
centration was discovered to be strongly associated with electrical 
conductivity in both liquid and solid phases of the wastewater. Re-
cent studies suggest that enhanced concentration of cations lead 
to destruction of sludge structure and decay its settleability [24] 
(Figure 2). Furthermore, it was found the presence of cations can 
increase viral adsorption onto the solids by shielding charge and 
shrinking the electrostatic double layer [25,26].

Figure 2: Association between SARS-CoV-2 and cations. All components of the figure were made using BioRender.com.
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Specifically in the sludge digester, it is important to understand 
how SARS-CoV-2 viral particles associate with other microorgan-
isms both at cellular and consortia levels. They are not bacterio-
phages and are therefore not expected to infect bacteria. However, 
with their fates tied together within the confines of that digester, 
they are bound to interact in a number of ways. For instance, how 
would bacteria-secreted enzymes and organic acids affect viruses? 
It is not unthinkable to imagine that bacterial hydrolases aimed 
at nutrient-liberating organic matter mineralization, could break-
down the viral cell envelope, exposing its genome to the toxic sur-
roundings. With the dwindling of global water supply, wastewater 
treatment and reuse have become increasingly imperative. Also, 
SARS-CoV-2 has dealt the world a rude awakening. We are not pre-
pared for pandemics. Global institutions and systems must be re-
designed to improve resiliency. Specifically, there is a need for us 
as wastewater professionals to innovate newer wastewater treat-
ment processes and systems to eliminate pathogens and prevent 
recycling them back to the population especially through biosolids 
reuse schemes, more efficiently. To accomplish this, science needs 
to meet engineering. Several fundamental scientific questions with-
in the domain of chemistry, microbiology and biophysics need to be 
answered to inspire advanced engineering thinking. The need for 
transdisciplinary collaboration has never been more dire. 
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