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Creatine supplementation was initially used as a therapeutic resource that was 
forgotten for decades until it was “rediscovered” by coaches and athletes. However, 
its therapeutic applications have been increasingly highlighted, such as in diseases 
of the nervous system. Some gaps remain about the mechanisms linked to the possi-
ble therapeutic effects of creatine on the central nervous system. One of the ways to 
understand the mechanisms will certainly pass through the expansion of knowledge 
about creatine transporters. So far, we have broad but still limited knowledge of the 
interference that these transporters may have on the action of dietary creatine (sup-
plemented or not) on neurons, astrocytes and the blood-brain barrier.

Abbreviations: ADP: Adenosine Diphosphate; AGAT: Arginine: Glycine Amidinotrans-
ferase; Akt: Protein kinase B (also called PKB) is a serine/threonine kinase; AMPK: 
Adenosine monophosphate-activated protein kinase; Arg: Arginine; ATP: Adenosine 
triphosphate; BB-CK: CK brain-specific isoform; CK: Creatine kinase; CNS: Central 
Nervous System; Cr: Creatine; CrP: Phosphocreatine; CrT: Creatine Transporter; GAA: 
Guinidinoacetate; GAMT: S-Adenosylmethionine: Guanidinoacetate Methyltransfer-
ase; Gly: Glycine; IOC:  International Olimpic Committee; ISSN: International Society 
of Sports Nutrition; mTBI: Mild Traumatic Brain Injury; PKB: Protein kinase B (also 
called Akt) a Serine/Threonine Kinase; ROS: Reactive Oxigen Species

Introduction
The maintenance of the cell’s energy charge is a priority for 

maintaining its operation. The numerous tasks that each cell has 
to maintain for itself and to fulfil the tissue and organ functions 
to which they belong demand high rates of energy consumption, 
obtained through food. Some metabolic pathways (a set of reactions 
that occur in a chain) are responsible for the production of energy, 
with emphasis on the reactions that occur within an organelle 
called mitochondria. However, when energy demand exceeds 
certain values in a specific system for short periods, the creatine 
phosphate (CrP) system becomes prominent in maintaining high 
rates of available energy.

Discussion
As initially summarized, cellular energy is primarily maintained  

 
by (a) glycolysis, (b) mitochondrial oxidative phosphorylation, and 
(c) ATP regeneration by CrP via the Lohmann reaction (ADP + CrP 
+ H+ → ATP + Cr) [1,2]. We can highlight that in skeletal muscles, 
Cr/CrP also works as an energy carrier between the mitochondria 
where ATP is produced and the cytosol, where ATP is used, but 
rapidly regenerated by Cr/CrP [1,2]. This elaborate scheme of 
Cr/CrP-mediated ATP regeneration and energy transport confers 
several advantages to muscle cells [3]. (Figure 1) can help better 
understand this process. CrP regenerates ATP at a rate 10 times 
faster than glycolysis and 40 times faster than mitochondrial 
oxidative phosphorylation, allowing muscle cells to handle sudden 
energy demands. On the other hand, 1 proton (H+) is released 
each time 1 ATP is hydrolyzed to ADP, which could cause acidosis 
(decreased cellular pH), but a proton will be immediately captured 
by the Lohmann reaction to regenerate ATP [4]. Due to the smaller 
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size of Cr (the molecular weight of creatine is ~130 daltons), 
skeletal muscle cells can store up to 10 times more Cr than ATP (the 
molecular weight of ATP is ~507 daltons, almost 4 times higher) as 
an energy reserve [1,2]. Last but not least, Cr stimulates oxidative 

phosphorylation when it reenters the mitochondria through 
voltage-gated anion channels, thus matching mitochondrial 
respiration with cellular demand for ATP [5,6]. (Figure 2) This 
function is also called an energy space buffer [3].

Figure 1: Energy metabolism of creatine
1.	 The hydrolysis of ATP into ADP + Pi + H+.
2.	 The enzyme creatine kinase (CK) transfers a phosphate from phosphocreatine to ADP.
3.	 Inside the mitochondria, free creatine receives a phosphate group and energy from cellular respiration.
4.	 Creatine phosphate is transported to the cytoplasm and is available to donate the phosphate group to ADP.

Figure 2: Schematic representations of CrP-mediated ATP regeneration and standard mTOR signalling responses under normal 
conditions (in black text and arrows, respectively) [7].

Under physiological conditions, Cr is obtained from food 
sources (beef, swine, poultry, fish, etc.) or endogenous synthesis. 
Endogenous synthesis is a two-step reaction catalyzed by the 
enzymes L-arginine: glycine amidinotransferase (AGAT) and 

S-adenosyl-L-methionine: N-guanidinoacetate methyltransferase 
(GAMT). AGAT converts glycine and arginine into guanidinoacetate 
(GAA) and ornithine. GAMT transfers a methyl group from 
S-adenosylmethionine (SAM) to GAA, generating Cr and S-adenosyl 
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homocysteine [1,4]. This seemingly simple pathway is complicated 
by the fact that most cells do not produce these two enzymes in 
equivalent amounts. In this way, the intermediate product (GAA) 
needs to leave the producing tissues and be transported to the 
tissues that produce large amounts of the GAMT enzyme [7]. For 
example, the mammalian kidney contains amounts of AGAT (which 
catalyzes large amounts of GAA) that must be transported via 
the bloodstream to the liver (which produces large amounts of 
the enzyme GAMT). Thus, in the liver finally, SAM can methylate 
GAA producing Cr. In contrast, the central nervous system (CNS) 
houses its Cr-synthesizing machinery (more on this later) [8]. 
After endogenous synthesis or nutritional supply, Cr is ready to 
fulfil its functions in other cells. Cr is a polar hydrophilic molecule 
incapable of crossing cell membranes (primarily nonpolar formed 
by phospholipids) so it requires a transporter, a protein capable 
of facilitating/permeabilizing the membrane for the passage of 
creatine.

The creatine transporter (CRT or Cr transporter) is Na+/Cl− 
dependent and specific for cellular uptake [9,10]. CRT is encoded 
by the SLC6A8 gene, which is located on the long arm of the X 
chromosome and has a coding sequence of 13 exons [9,10]. The 
protein consists of 635 amino acids with a molecular mass of about 
70.5 kDa [11]. This transporter is a member of a protein superfamily 
(called SLC6), which includes transporters for the uptake of some 
neurotransmitters (eg, dopamine, GABA, serotonin) and amino 
acids (eg, glycine) [12]. The SLC6 family has a common three-
dimensional structure, with 12 transmembranes (TM) domains, an 
extracellular loop between TM3 and TM4 with N-glycosylation and 
N- and C-terminal sites facing the cytoplasmic side of the membrane 
[13,14]. CRT is strongly regulated by extracellular levels of Cr, with 
high Cr reducing uptake activity [1]. Furthermore, cellular energy 
depletion inhibits CRT via the AMPK-mTOR pathway [15]. CRT 
is widely expressed in different tissues [9,14,16], including the 
brain, where it has been predominantly detected in cortical and 
subcortical regions involved in motor and sensory processing, 
learning and memory, and in the control of affective behaviour 
[9,17,18]. At the cellular level, CRT is expressed in oligodendrocytes 
and neurons, with notably high levels in fast-peaking parvalbumin 
inhibitory neurons [19,20]. It is also present in capillary endothelial 

cells that make up the blood-brain barrier (BBB), whereas it was 
detected only in smaller amounts in astrocytes [21].

Thus, Cr can enter the brain across the BBB, but blood-brain 
transport of Cr appears relatively inefficient, at least at a mature 
age [22-24]. Creatine (Cr) and creatine phosphocreatine (CrP) have 
the highest concentration in tissues that require a constant or rapid 
supply of energy, including skeletal muscle, heart and brain [1,25]. 
Cr/CrP accumulates functions of ATP resynthesis and transport of 
energy produced in cellular respiration. It also has neuroprotective 
effects and positively interferes with cognition [26,27]. There 
is already enough empirical evidence to support that both in 
conditions of hypoxia and normoxia it is advantageous to use oral 
supplementation of Crem in healthy adults [4,8,28]. On the other 
hand, when Cr/CrP concentrations and CK activity are low, they 
are correlated with neurodegenerative diseases [29]. Intellectual 
disability, autism or seizures in children also show changes in Cr 
concentrations [7,30]. Brain injuries seem to be more difficult to 
treat when Cr concentrations are low, mainly due to a slow blood-
brain transport of Cr that is mediated by CRT [7,31,32]. Although 
Cr/CrP may have functions similar to those of skeletal muscle in the 
brain, the effects of CRT deficiency on stress adaptation and energy 
homeostasis remain unclear. CrP regenerates ATP at a rate 10 
times faster than glycolysis and 40 times faster than mitochondrial 
respiration. This speed of catalysis allows muscle fibres to respond 
very efficiently to sudden energy demands [33-35]. 

Furthermore, it is important to remember that ATP hydrolysis 
releases 1 proton (H+) in addition to ADP, potentiating acidosis 
(decrease in cell pH), but the Lohmann reaction to regenerate 
ATP consumes a proton with each transfer of phosphate from CrP 
to the ADP [4]. As the molecular weight of creatine is low (about 
130 daltons), skeletal muscle fibres can store up to 10 times more 
Cr than ATP (the molecular weight of ATP is ~507 daltons, almost 
4 times higher) as a reserve of energy [1,2]. (Figure 3) Last but 
not least, free Cr after transfer of the phosphate group stimulates 
cellular respiration when ´w is transported into the mitochondria 
through voltage-gated anion channels, thus matching mitochondrial 
respiration with the cellular demand for ATP. [5,6]. This function is 
also called na energy space buffer [3]. 
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Figure 3: A proposed model for creatine synthesis and transport within the central nervous system. In normal conditions, a high 
proportion of cells do not express AGAT, GAMT, and SLC6A8 
1.	 Endogenous synthesis of Cr within CNS can be achieved between AGAT- and GAMT-expressing cells and the concomitant 
trafficking of GAA between them 
2.	 Or in cells co-expressing AGAT+GAMT 
3.	 A low proportion of brain cells only express SLC6A8
4.	 i.e. Cr users-only.

Conclusion
As described, knowledge about the functions of creatine in 

energy metabolism themselves seems to be well described by 
science, especially in skeletal muscle. However, there are still 
limitations to the knowledge of creatine production and transport 
in the central nervous system. Understanding the mechanisms 
of creatine transport into the brain (crossing the blood-brain 
barrier) and the production of creatine by neurons, astrocytes and 
oligodendrocytes will be essential to develop strategies for the use 
of creatine in the prevention and treatment of various diseases and 
loss of cognition in older people.
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