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Objective: The β-D-mannuronic acid (M2000) is a new non-steroidal anti-inflam-
matory drug (NSAID) with immunomodulatory effects. We have previously shown 
that the gene expression level of TLR/NF-kB signaling pathway is downregulated in 
PBMC (Peripheral blood mononuclear cells) of treated Ankylosing Spondylitis (AS) 
patients with M2000 in vivo. Here, we aimed to determine the effect of M2000 on 
TLR2 and TLR4 expression and their downstream signaling in monocyte derived 
macrophages in AS patients in vitro. 

Methods: The blood samples were used for isolating PBMCs and by using Magnet-
ic Activated Cell Sorted (MACS) method, monocytes were isolated and differentiated 
to macrophages for evaluating protein expression of TLR2 and TLR4 by flow cytom-
etry and gene expression of Myd88, MAPK14, NF-kB (p65 subunit) and IkB-α by Real 
time PCR. Cell culture supernatants were collected and the concentrations of TNF-α 
and IL-6 cytokines were assessed by enzyme-linked immunosorbent assay (ELISA).

Results: The gene expression of NF-kB and MAPK14 were significantly increased 
in the monocyte derived macrophages in AS patients compared to healthy subjects 
(p < 0.05). M2000 alone or in combination with TLR2 and TLR4 agonists (LTA/ LPS) 
significantly suppress the TLR2 and TLR4 expression and its downstream signaling 
pathway in monocyte derived macrophages. Also, the production of TNF-α and IL-6 
were decreased in M2000-treated monocyte derived macrophages. 

Conclusion: Since, development of inflammation through triggering TLR2 and 
TLR4 receptors plays a crucial role in the pathogenesis of AS, therefore, M2000 could 
be recommended as a therapeutic option by modulating TLR2 and TLR4 expression 
in AS patients.
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Introduction
Ankylosing spondylitis (AS) is a progressive, systemic, and in-

flammatory rheumatic disease of seronegative spondyloarthrop-
athies (SpAs) which primarily involves sacroiliac joints and spine 
and can manifest as inflammatory back pain and progressive spinal 
ankylosis and stiffness [1,2]. All these pathological changes lead to 
a significant loss of work productivity and decreased quality of life 
[3]. The prevalence of AS generally ranged 0.1% to 1.2% in differ-
ent populations [4]. AS predominantly affects men in their peak of 
productive years [20 to 40], with a male: female ratio of approxi-
mately 2-3:1. Around 90% of patients exhibit their first symptom 
before age 40 [2,5,6]. The etiology and pathogenesis of AS remain 
unknown, but the combination of genetic, environmental, and im-
munological factors is thought to be important in its pathogenesis 
[2]. There is a strong genetic association between the major his-
tocompatibility complex (MHC) group of molecules, specifically 
HLA-B27, and AS [7-9]. The population prevalence of AS is gener-
ally associated with the frequency of HLA-B27 in different societ-
ies worldwide. In the US, HLA-B27 is present in 90% of patients 
with AS [10,11]. A previous study showed that the frequency of AS 
patients with HLA-B27 is 68.9% in Iran [12]. Other susceptibility 
genes include IL-23 receptor (IL23R), endoplasmic reticulum ami-
nopeptidase 1 (ERAP1) and ERAP2, killer cell immunoglobulin-like 
receptor (KIR) complex, and STAT3 [13-16]. Also, epidemiological 
and clinical studies showed the fundamental role of environmen-
tal factors, probably microbial infections, in the pathogenesis of AS 
[17]. 

The initial response to infection involves the activation of the 
innate immune system. Cells involved in the recognition of micro-
bial pathogen-associated molecular patterns by Toll-like receptors 
(TLRs) may contribute to initiating or exacerbating inflammation 
in AS [18]. TLRs belong to a family of type I transmembrane glyco 

 
proteins participating in the first line of defense against invading 
pathogens [19,20]. These receptors recognize pathogen-associated 
molecular patterns or endogenous “danger” molecules and play a 
significant role in the regulation of innate immune responses and 
inflammation [21,22]. They are expressed in numerous types of 
antigen-presenting cells (APCs), including dendritic cells (DCs), 
monocytes, macrophages, and B lymphocytes [23]. Currently, 11 
members of the TLR family have been identified in humans [24]. 
Among the TLRs, TLR2 and TLR4 are particularly important recep-
tors, activated by various bacterial cell wall components. TLR2 is a 
receptor that is activated by lipoteichoic acid (LTA) from Gram-pos-
itive bacteria, whereas TLR4 is activated by lipopolysaccharide 
(LPS) from Gram-negative bacteria [21]. Activation of TLRs by their 
ligands initiates intracellular signaling pathways [25]. Upon activa-
tion of TLR2 and TLR4, myeloid differential primary response pro-
tein (MyD88) activates a family of IL-1R associated kinases (IRAKs), 
IRAK-1 is subsequently released and leading to the phosphoryla-
tion and activation of TNFα receptor-associated factor 6 (TRAF6). 

Toll interacting protein (Tollip) is an inhibitory adaptor protein 
that negatively regulates the TLR-mediated signaling pathway. This 
protein forms a complex with IRAK in resting cells and inhibits phos-
phorylation and activation of IRAK [26]. Activation of TRAF6 leads 
to the activation of two distinct pathways: IkB kinase (IKK) complex 
and the mitogen-activated protein kinase (MAPK) (ERK, JNK, p38) 
pathways. IkB kinase (IKK) complex catalyzes the phosphorylation 
of inhibitory kB (IkB) protein and results in the activation of nu-
clear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 
[27]. Subsequent activation of the transcription factor NF-ⱪB and 
the MAPK cascade leads to the synthesis and secretion of pro-in-
flammatory cytokines such as TNF-α, IL-6, IL-23, and IL-1β, which 
can induce inflammatory responses [28]. Although TLR-mediated 
inflammation is a significant aspect of defense against pathogens, it 
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may also result in the development of several inflammatory diseas-
es [20,29]. Increased TLR expression and increased responsiveness 
to TLR ligands have been observed in multiple autoinflammatory 
diseases [30,31]. Several studies have shown the increased expres-
sion of TLR2 and TLR4 in monocytes/macrophages derived from 
patients with chronic inflammatory disease [23,32]. All these find-
ings show the importance of TLRs signaling pathway in the patho-
genesis of autoinflammatory diseases. 

Therefore, targeting TLRs could be an important therapeutic 
strategy for the treatment of chronic inflammatory diseases such 
as AS.  The TLRs antagonists are small molecules that inhibit TLRs 
signaling by binding to the TLRs domains and subsequently mod-
ulate the inflammatory response in the autoinflammatory disease 
under in vitro conditions. The M2000 (β-D-mannuronic Acid) is a 
novel nonsteroidal anti-inflammatory drug (NSAID) with low mo-
lecular weight and high tolerability and efficacy with the patent 
number of DE-102016113018. It has shown the potent immuno-
suppressive and immunomodulatory effects in various experimen-
tal models such as experimental autoimmune encephalomyelitis 
(EAE), adjuvant-induced arthritis (AIA), nephrotic syndrome, and 
acute glomerulonephritis [33-36]. Recently we demonstrated the 
antagonistic effects of M2000 on TLR2 and TLR4 signaling in the 
human embryonic kidney (HEK) 293 cell line [37]. Also, our previ-
ous in vivo study showed that the expression level of genes associ-
ated with TLR/NF-kB Signaling Pathway is reduced in AS patients 
after treatment with M2000 [38]. Based on this evidence and the 
significant role of TLR2 and TLR4 in the pathogenesis of chronic 
inflammatory disease like AS, we studied the effects of the M2000 
on the TLR2 and TLR4 expression, associated downstream signal 
transduction pathway and cytokine production of monocyte-de-
rived macrophages in AS patients and healthy controls under in 
vitro condition.

Methods
Extraction of β -D-Mannuronic Acid

The β-D-mannuronic Acid (M2000) was extracted from Alginic 
acid sodium salt (Sigma-Aldrich, St. Louis, MO). The purity of the 
drug was determined using Fourier Transform Infrared (FT-IR) and 
Carbon-13 Nuclear Magnetic Resonance (C-NMR) spectroscopy 
[39]. 

Ethics Approval

All patients signed their written informed consent. The Ethics 
Committee of Tehran University of Medical Sciences granted ethics 
approval for this study.

Patients and Samples 

Ten patients with AS (8 men and 2 women; mean ± SD age 
of 31.5 ± 5.9 years), who fulfilled the modified New York criteria 
1984, defined as a Bath Ankylosing Spondylitis Disease Activity In-
dex (BASDAI) score ≥4 on a 0-10 cm Visual Analogue Scale (VAS) 
and Bath Ankylosing Spondylitis Functional Index (BASFI) score ≥ 
4 were enrolled in this study. Key exclusion criteria included any 
history of fever and uncontrolled concomitant diseases, malignan-
cies, and pregnancy. The Patients were selected from the outpatient 
clinic of Rheumatology Research Center (Shariati Hospital, Tehran, 
Iran), and Iran Rheumatology center. We also recruited 10 sex- and 
age-matched healthy subjects as controls.

Cell Separation and Culture

Peripheral blood mononuclear cells (PBMCs) were isolated 
from the venous whole blood samples (40 ml per donor) by stan-
dard Ficol-paque (Biosera, France) density-gradient centrifugation. 
CD14+ monocytes were isolated from the PBMCs by positive im-
munomagnetic selection using CD14 microbeads (MACS monocyte 
isolation kit, Miltenyi Biotec), according to the manufacturer’s in-
structions. Monocytes were assessed by flow cytometry; 95.7% of 
the cells were CD14+ (Figure 1a). The monocytes (5×105 cells/ml) 
were then seeded on 24-well plates and cultured for 7 days with 
RPMI 1640 supplemented by 10% of heat-inactivated fetal bovine 
serum, 2 mM of L-glutamine, 1 mM sodium pyruvate, 100 U/mL of 
penicillin, and 100 µg/mL of streptomycin (Gibco, Life Technolo-
gies USA). For M1-macrophage differentiation, human granulocyte 
macrophage colony-stimulating factor (10 ng/ml; R&D Systems, 
UK) was added to the dishes [40]. After 3 days, the medium was 
changed, and growth factors were freshly added. On day 6 cells 
were detached by rinsing with phosphate-buffered saline (PBS; 
PAA Laboratories, Germany) and cells were assessed by flow cy-
tometry; 92.3% of the cells were CD206+ (Figure 1b).
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Figure 1: Representative flow cytometry histograms showing 
(a)	 CD14 FITC+ Monocytes 
(b)	 CD206 APC+ Monocyte derived macrophages. Red histograms show signals of specific markers; blue histogram shows 
signals of isotype controls.

Treatment of Cells

The monocyte-derived macrophages were pretreated with 
M2000 low dose (5 µg/well) and high dose (25 µg/well) for 4 hours 
and then incubated with and without 10 µg/ml LTA (Sigma-Aldrich, 
USA) as TLR2 agonist and 1 µg/ml LPS (Invivogen, USA) as a TLR4 
agonist. Also, cells were stimulated with LPS and LTA without 
M2000 (5 and 25 µg/well) as a positive control [37,39]. Moreover, 
cells were treated with 30 µg/ml OxPAPC (Invivogen, USA) as TLR2 
and TLR4 antagonist alone (negative control) and incubated for 24 
h at 37ºC in the presence of 5% CO2.

Flow Cytometry

For fluorescence-activated cell sorting (FACS), monocyte-de-
rived macrophages were washed with staining buffer (PBS contain-
ing 1% BSA and 0.02% NaN3) and incubated with 5 µg fluorescein 
isothiocyanate (FITC) labeled anti-human CD282 (TLR2) and phy-
coerythrin (PE) anti-human CD284 (TLR4) monoclonal antibodies 
(Biolegend, USA) on ice for 15-20 minutes in the dark. The FITC 
Mouse IgG2a and PE Mouse IgG2a were used as isotype control 

antibodies. Fluorescence was measured using a BD flow cytome-
ter (BD, USA), and data were analyzed using FlowJo software on 
marked cell populations on FSC-SSC dot plots.

RNA Extraction and RT-PCR

Total RNA was extracted from untreated and treated cells by 
a Total RNA purification kit (Hybrid RTM Gene All, Seoul, Korea) 
according to the manufacturer’s protocol. Adequate RNA quality 
was determined by agarose gel electrophoresis on the GelRedTM 
(Biotin, USA). The purity and concentration of total RNA were as-
sessed by UV spectrophotometer (NanoDrop ND1000) based on 
the A260/280 ratio, which was in the range of 1.7–2.0 for all sam-
ples. Complementary DNA (cDNA) was synthesized using oligo-dT 
and random 6-mer primers by using a cDNA reverse transcription 
kit (ABI Systems). Afterward, PCR analysis and gel agarose elec-
trophoresis were performed to confirm the quality of synthesized 
cDNA and primers. The gene-specific primers were designed using 
the free Web-based software Primer-BLAST (National Center for 
Biotechnology Information). The primer sequences used in the cur-
rent study are listed in (Table 1). 
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Table 1: Primer sequences used in Quantitative Real-time PCR.

N Gene name
Primer sequence

5’            3’
Product size Accession number

1 GAPDH
5’-CCCACTCCTCCACCTTTGAC-3’

75 NM_001289746.1
5’-CATACCAGGAAATGAGCTTGACAA-3’

2 NF-kB (P65 subunit)
5’- GCTACACAGGACCAGGGACAGT-3’

118 NM_001145138.1
5’- AGCTCAGCCTCATAGAAGCCATC-3’

3 Myd88
5’-CGCCGCCTGTCTCTGTTC-3’

118 NM_001172569.1
5’- GGTCCGCTTGTGTCTCCAGT-3’

4 IkB-alpha
5’- CTCCACTCCATCCTGAAGGCTA-3’

167 NM_020529.2
5’- AGGTCCACTGCGAGGTGAAG -3’

5 MAPK14
5’- GAGGTGCCCGAGCGTTAC -3’

114 NM_139013.2
5’- GGAGAGCTTCTTCACTGCCAC -3’

Quantitative Real-time PCR 

Real-time PCR was performed using SYBR Premix (ABI System) 
with a specific primer. All reactions carried out in a total volume of 
20 μl included 1 µl cDNA, 10 µl SYBR Premix, 7 µl RNase Free-Wa-
ter, 1 µl (100 nM) forward primer, 1 µl (100 nM) reverse primer. 
The PCR proceeded on the ABI StepOne Plus real-time PCR system 
(ABI System, USA) according to the following program: an initial 
step at the holding phase of 95ºC for the 30s followed by 40 cycles 
a cycling stage of 95ºC for 5s, 60ºC for 30s, and 60 ºC for 15s. The 
gene levels were normalized to the housekeeping gene Glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) as an internal control. 
The relative changes in gene expression were calculated using the 
2-ΔΔCt method (Ct refers to the threshold value) [41]. To reexamine 
the size of PCR products, amplified products were analyzed on 3% 
agarose gel electrophoresis.

Measurement of Cytokine Production

Cell culture supernatants were collected and the concentra-
tions of TNF-α and IL-6 cytokines were assessed by enzyme-linked 
immunosorbent assay (ELISA kit eBioscience) according to the 
manufacturer’s guidelines. The optical absorbance was read at 450 
nm on a 96-well microplate ELISA reader and cytokine concentra-
tions were determined from a curve of known concentrations of cy-
tokine standard. The results were expressed in pg/ml.

Statistical Analysis

All statistical analyses were conducted using the SPSS 24 soft-
ware. (Inc, Chicago, IL, USA). Differences between groups were then 
evaluated by one sample T-Test, independent samples T-Test, and 
one-way analysis of variance (ANOVA) using Tukey’s test. The re-
sults were presented as mean ± SD and p-values less than 0.05 were 
considered to be significant.

Results
Gene Expression of Downstream Signaling Molecules of TLRs 
in AS Patients and Healthy Controls

The gene expression level of downstream signaling molecules 
of TLRs on unstimulated ‏monocyte-derived macrophages in anky-
losing spondylitis patients and healthy controls were determined 
by quantitative real-time PCR. Our results showed that the mRNA 
expression of NF-kB was significantly increased in patients with AS 
in comparison to healthy subjects (p = 0.017), and the expression 
level of IkB-α was significantly decreased in AS patients in compari-
son to healthy controls (p = 0. 014) (Figure 2). To assess the effect of 
M2000 on the gene expression level of downstream signaling mol-
ecules of TLRs, monocyte-derived macrophages from AS patients 
were exposed to different concentrations of M2000, and then, we 
evaluated the mRNA expression of Myd88, MAPK14, NF-kB, IkB-α 
using quantitative real-time PCR. 
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Figure 2: Relative gene expression of NF-κB, MAPK14, MyD88 and IkB-α in unstimulated monocyte-derived macrophages of 10 
AS patients and 10 healthy controls. Comparison between fold changes on mRNA expression performed with the one-sample 
t-test. Data are presented as mean ± SD.

Effect of M2000 on NF-kB (p65 subunit)

The statistical analyses revealed significant differences between 
the treatment groups. Stimulation with 1 µg/ml LPS enhanced gene 
expression of NF-kB (p < 0.05) whereas, the expression level of NF-
kB was significantly decreased when M2000 (25 µg/well) was add-
ed 4 h before LPS (p = 0.03). Similar to LPS, stimulation with 10 µg/
ml LTA augmented mRNA expression of NF-kB (p = 0.01) and the 
mRNA level was reduced, when M2000 (25 µg/well) was added 4 h 
before LTA (p = 0.05) (Figure 3a).

Effect of M2000 on Myd88

The cells treated with 1 µg/ml LPS had a significantly higher 
level of MyD88 mRNA versus untreated cells (p < 0. 001), while the 
mRNA expression was significantly reduced when M2000 (5 µg/
well and 25 µg/well) was added 4 h before LPS (p < 0. 001). Also, 
our results indicated that stimulation with 10 µg/ml LTA increased 
the mRNA expression of MyD88 and the mRNA level was reduced 
when M2000 (25 µg/well) was added 4 h before LTA; however, the 
difference was not statistically significant (p > 0.05) (Figure 3b).

Effect of M2000 on MAPK14

Stimulation of cells with a concentration of high (25 µg/

well) dose of M2000 alone led to a decrease in gene expression of 
MAPK14 in comparison with the control group, but the difference 
was not statistically significant (p > 0.05). The data also revealed 
that stimulation with 1 µg/ml LPS enhanced the gene expression of 
MAPK14 (p < 0.001) whereas, the expression level of MAPK14 was 
significantly decreased when M2000 (5 µg/well and 25 µg/well) 
was added 4 h before LPS (p< 0.01). Similar to LPS, stimulation with 
10 µg/ml LTA augmented mRNA expression of MAPK14 (p = 0.07) 
and the mRNA level was significantly reduced, when M2000 (25 
µg/well) was added 4 h before LTA (p = 0.03) (Figure 3c)

Effect of M2000 on IkB-α 

After stimulation with concentrations of low (5 µg/well) and 
high (25 µg/well) doses of M2000 alone or in combination with 
LPS/LTA, the expression of IkB-α was increased in comparison with 
the control group, but this difference was not statistically signifi-
cant (p> 0.05). The expression of IkB-α was significantly increased 
when M2000 (25 µg/well) was added 4 h before LPS (p = 0.024). 
(Figure 3d). OxPAPC as an antagonist did not affect the gene expres-
sion level of downstream signaling molecules of TLRs.
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Figure 3: Real-time PCR was performed on total RNA isolated from PBMC of 5 AS patients 
(a)	 The Real-time PCR analysis for NF-κB mRNA expression 
(b)	 The Real-time PCR analysis for MyD88 mRNA expression 
(c)	 The Real-time PCR analysis for MAPK14 mRNA expression 
(d)	 The Real-time PCR analysis for IkB-α mRNA expression in AS monocyte-derived macrophages that pretreated with M2000 
(M 5, 25 µg/well) in the presence or absence of LPS (1 µg/ml), LTA (10 µg/ml) and OXPAPC (30 µg/ml). Data are presented as 
mean ± SD. *P < 0.05, as compared with control group. #P < 0.05, as compared with LPS group. $p < 0.05, as compared with LTA 
group.

Effect of M2000 on the surface expressions of TLR2 and TLR4

The cell surface expressions of TLR2 and TLR4 on ‏monocyte-
derived macrophages in AS patients and healthy controls were de-
termined by flow cytometric analysis (Figure 4). The baseline Mean 
Fluorescence Intensity (MFI) of TLR2 (55.97 ± 1.49) was increased 
in AS patients compared with healthy controls (p = 0.052). Expo-
sure of monocyte-derived macrophages from AS patients with 25 
µg/well of M2000 led to a significant decrease in the MFI of TLR2 
(p < 0.01). Also, the stimulation of ‏ cells with 10 µg/ml LTA aug-
mented the MFI of TLR2 (147.6 ± 2.24) in comparison with unstim-
ulated control cells (p < 0. 001), while this level was significantly 

decreased, when M2000 at the concentration of low (5 µg/well) 
and high (25 µg/well) were added 4 h before LTA (p < 0. 001). (Fig-
ure 5a). The MFI of TLR4 was also increased in AS patients (43.45 ± 
2.5) compared with healthy controls, but the difference was not sta-
tistically significant. Treatment of monocyte-derived macrophages 
from AS patients with 1 µg/ml LPS increased the MFI of TLR4 to 
(153 ± 0.5, p < 0. 001). On the other hand, pretreatment of cells 
for 4 h with 25 µg/well of M2000 before stimulation with LPS sig-
nificantly decreased the MFI of TLR4 than LPS alone ( p < 0. 001) 
(Figure 5b). Moreover, OxPAPC had no significant effect on TLR2 
and 4 expressions.
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Figure 4: 
A.	 Expression of TLR2 on monocyte derived macrophages of 5 AS patients. non-stimulated monocyte-derived macrophages of 
healthy subjects 
a)	 Non-stimulated AS monocyte-derived macrophages 
b)	 AS monocyte-derived macrophages treated with 5µg/well β-D-mannuronic acid
c)	 25µg/well M2000
d)	 10 µg/ml LTA 
e)	 5µg/well M2000+LTA 
f)	 25µg/well M2000+LTA 
g)	 OxPAPC 
B.	 Expression of TLR4 on monocyte-derived macrophages of 5 AS patients. non-stimulated monocyte-derived macrophages of 
healthy subjects 
a)	 Non-stimulated AS monocyte-derived macrophages 
b)	 AS monocyte-derived macrophages treated with 5µg/well β-D-mannuronic acid
c)	 25µg/well M2000
d)	 1 µg/ml LPS 
e)	 5µg/well M2000+LPS 
f)	 25µg/well M2000+LPS 
g)	 OxPAPC
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Figure 5: The effect of M2000 on the protein expression of TLR2,4 on monocyte-derived macrophages of 5 AS patients.
(a)	 The effect of M2000 on the protein expression of TLR2 
(b)	 The effect of M2000 on the protein expression of TLR4 in AS monocyte-derived macrophages. Cells were pretreated with 
M2000 (5, 25 µg/well) in the presence or absence of LTA (10 µg/ml), LPS (1 µg/ml) and OXPAPC (30 µg/ml). Data are presented 
as mean ± SD. *P < 0.01, as compared with non-stimulated AS monocyte-derived macrophages. $P < 0. 001, as compared with LTA 
group #p < 0. 001, as compared with LPS group. NS (non-stimulated), HC (healthy control), AS (ankylosing spondylitis).

Effect of M2000 on Cytokine Production 

Regarding M2000 affected the gene expression level of down-
stream signaling molecules of TLRs, we tested whether M2000 can 
decrease the production of TNF-α and IL-6 as inflammatory cyto-
kines. Cells were treated with M2000 with or without TLR2 and 
TLR4 agonist and antagonist for 24 h and then cells supernatants 
were collected for evaluation of TNF-α and IL-6 cytokines using 
ELISA.

Effect of M2000 on TNF-α production

TNF-α synthesis in AS monocytes-derived macrophages is 
higher than that in healthy subjects; although, the difference was 
not statistically significant (p > 0.05). The exposure of cells to β-D-
mannuronic acid (5 µg/well and 25 µg/well) led to a decrease in the 
production of TNF-α (p < 0.01). Our results also showed that treat-
ment with 1 µg/ml LPS significantly increased TNF-α production 

(p < 0.001), whereas this level was lower when M2000 was added 
4 h before LPS (p < 0.001). Moreover, challenged cells with 25 µg/
well of M2000 before LTA showed a decrease in the concentration 
of TNF-α in comparison with stimulated cells with LTA alone (p = 
0.02). OxPAPC had no effect on TNF-α production (p< 0.05) (Figure 
6a).

Effect of M2000 on IL-6 production

The level of IL-6 production had no significant difference in AS 
monocytes-derived macrophages as compared with healthy sub-
jects (p > 0.05). The stimulation of ‏cells with 1 µg/ml LPS and 10 
µg/ml LTA significantly increased IL-6 production in comparison 
with unstimulated control cells (p < 0.001), while this level was sig-
nificantly decreased, when M2000 at the concentration of low (5 
µg/well) and high (25 µg/well) were added 4 h before LPS and LTA 
(p < 0. 001). OxPAPC had no effect on IL-6 production (p < 0.05) 
(Figure 6b).
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Figure 6: The effect of M2000 on the cytokine production. 

(a)	 The effect of M2000 on TNF-α 

(b)	 The effect of M2000 on IL-6 in supernatants of 5 AS monocytes-derived macrophages that pretreated with M2000 (M 5, 25 
µg/well) in the presence or absence of LPS (1 µg/ml), LTA (10 µg/ml) and OXPAPC (30 µg/ml). Data are presented as mean ± SD. 
*P < 0.05, as compared with control group. #P < 0.05, as compared with LPS group. $p < 0.05, as compared with LTA group. NS 
(non-stimulated), HC (healthy control), AS (ankylosing spondylitis).

Discussion
The β-D-mannuronic acid (M2000) and its epimer α-L-guluronic 

acid (G2013) are new NSAIDs with immunomodulatory effects that 
have been investigated in the level of in vitro, in vivo, and clinical 
trials [42-46]. Although the activation of TLRs is necessary for host 
defense against various invading pathogens, the overactivation of 
TLR pathways can also lead to chronic inflammatory diseases [47]. 
Dysregulated TLR signaling disrupts the immune homeostasis by 
pro-inflammatory cytokines production and contributes to the de-
velopment of many inflammatory disorders [48]. Therefore, tar-
geting TLRs signaling may be beneficial to prevent and treat these 
disorders. Growing evidence shows that a dysfunctional TLR-me-
diated response plays a critical role in the pathogenesis of spondy-
loarthropathies [24,49,50]. The increased TLR2 and 4 expressions 
were reported in the synovium of patients with SpA, which is re-
duced by treatment with infliximab [51]. Yang et al. demonstrated 
that TLR4 expression in PBMCs in AS patients is higher than that 
of healthy controls [52]. Assassi et al. investigated the whole-blood 
gene transcript profile of AS patients and confirmed the overex-
pression of TLR4 and TLR5 in AS patients compared to healthy con-
trols and also indicated the decreased expression of TLR4 and TLR5 
after treatment with TNF-α inhibitor [53]. Another study showed 
that the TLR4 molecule and its mRNA levels were significantly in-
creased in AS patients in comparison to healthy subjects [52]. 

However, it is not completely clear what kinds of mechanisms 
are responsible for TLRs upregulation. The ability of certain indi-
viduals to respond properly to TLR ligands may be impaired by 
single nucleotide polymorphisms (SNPs) within the TLR gene, re-
sulting in altered susceptibility to infectious or inflammatory dis-
eases [54]. Snelgrove et al. showed a link between TLR4 Asp299Gly 
and Thr399Ile polymorphisms and susceptibility to AS [55]. All 
these studies express a significant association between increased 
expression of TLR and the pathogenesis of AS. In the present study, 
we demonstrated a change in the level of TLR2 and TLR4 protein 
expression on the monocyte-derived macrophages in AS compared 
with healthy controls. Also, the statistical analysis demonstrated 
that NF-kB mRNA level was significantly increased in AS patients 
compared to healthy controls, whereas IkB-α was reduced. The 
M2000 was identified as a new anti-inflammatory drug with the 
immunosuppressive properties. Previous studies have revealed 
some molecular mechanisms of this novel anti-inflammatory drug 
[56]. Regarding the M2000 has shown inhibitory effects on TLR 2, 4 
signaling in HEK293 cells and TLR/ NF-kB signaling in PBMC in AS 
patients [37,38], we evaluated the effects of this drug on the TLR2 
and TLR4 downstream signaling transduction pathway of mono-
cyte-derived macrophages in AS patients under in vitro condition. 
Our data indicated that TLR2 and TLR4 expression was decreased 
in monocyte-derived macrophages in AS patients following the ex-
posure to M2000 (at 5 and 25 µg/well).
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 Moreover, treatment with TLR2 and TLR4 agonist increased 
surface expression of these receptors whereas pretreatment with 
M2000 before the agonist significantly reduced the expression level 
of these surface molecules, indicating that M2000 probably inhibits 
the attachment of agonist to TLR2 and TLR4. Also, we showed that 
M2000 had an inhibitory effect on gene expression of downstream 
signaling molecules of TLR2 and TLR4 and this was in line with the 
study by Aletaha, et al. [37]. The mRNA expression of NF-κB and 
MAPK14 was downregulated following the exposure to M2000 (at 
25µg/ml). It is known that the stimulation of TLR4 by LPS activates 
downstream signaling pathways such as NF-κB and MAPKs [57]. In 
agreement with these reports, in our studies, we found that treat-
ment with LPS/LTA augmented mRNA expression of MyD88, NF-κB, 
and MAPK14, and their amounts were reduced when M2000 (at 5 
and 25 µg/well) was added 4 h before the agonist. IkB-α is an inhib-
itory protein which its function is to inhibit the NF-kB transcription 
factor. Stimulation of cells with various inducers, including LPS, 
results in the degradation of the IkB protein, releasing NF-κB to 
activate gene transcription [58]. Our results reveal that M2000 (at 
5 and 25 µg/well) alone and in combination with TLR2 and TLR4 
agonists increased the expression level of IkB-alpha compared to 
untreated control cells. To elucidate the anti-inflammatory effects 
of M2000 on TLR2 and TLR4 downstream signaling, we also deter-
mined TNF-α and IL-6 production in the monocyte-derived macro-
phages culture supernatant.

As seen in data analysis LPS/LTA treatment of AS macro-
phages strongly induce the production of TNF-α and IL-6 cytokines 
and M2000 alone or in combination with LPS/ LTA significantly 
down-regulated production of TNF-α and IL-6 cytokines in these 
cells. In our study, we found that M2000 treatment of stimulated 
macrophages from AS patients significantly decreased TLR2 and 4 
surface expression and downregulated gene expression of MyD88, 
MAPK14, and NF-kB in TLRs downstream signaling. Thereby 
M2000 could reduce the TLR-mediated inflammatory responses in 
AS patients. 

Conclusion
It is known that TLRs-triggered inflammatory response plays 

an important role in the pathogenesis of AS and interfering with the 
cytokine overproduction may improve the outcome and quality of 
life of the patients. In this study, we demonstrated that the M2000 
could downregulate the production of pro-inflammatory mediators 
in AS monocyte-derived macrophages by inhibiting the TLR2 and 
TLR4 downstream signaling pathways. Therefore, M2000 might be 
a new therapeutic approach for targeting TLR-mediated cytokine 
production in patients with AS.
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