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In this report we model the EEG signal as a sum of sine waves. Each sine wave has 
a random frequency and a random amplitude. We use band pass filters to separate the 
different frequency segments of the EEG. The frequency is modeled as an Ornstein-
Uhlenbeck (OU) stochastic process i.e., the frequency is bouncing around a mean value. 
In each EEG band, an adaptive filter is developed to estimate the random frequency. The 
instantaneous amplitude is then obtained by using adaptive noise cancelling where one 
channel is the EEG band pass signal and the other channel is the estimated sine wave with 
random frequency. Another amplitude estimate is obtained by using an energy separation 
operator with the estimated frequency. The results are compared to the Teager energy 
separation operator (TEO) and showed better performance
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Introduction
The modulated sine wave is a common model for signals used 

in communications, speech analysis, and EEG analysis IEEE [1] Van 
Zaen [2] among others. The modulation could be in the amplitude, 
the frequency, or both. The estimation of the modulated signal 
parameters is known in the literature as the AM-FM signal problem. 
The objectives are to estimate the instantaneous amplitude and the 
instantaneous frequency. Due to the considerable non-stationary 
and nonlinear characteristics of the EEG, commonly used methods 
based on Fourier transform (FT) provide the resulting frequency 

spectrum with only little physical sense. Therefore, several methods 
to analyze spectrum of such signals have been developed in past 
decades. Hilbert-Huang Transform (HHT) is one of these methods. 
HHT is based on empirical mode decomposition (EMD), followed by 
Hilbert transform to compute Hilbert spectrum [Huang, et al. [3]]. 
Teager energy operator (TEO) which is a discrete energy separation 
algorithm (DESA) [Maragos, et al. [4,5]] is commonly used for the 
estimation of the instantaneous amplitude and the instantaneous 
frequency. Unfortunately, the accuracy of the TEO deteriorates 
rapidly as the signal to noise ratio of the observations gets lower or 
as the fluctuations in the amplitude or frequency are relatively high. 
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Nevertheless, it was used in several EEG analysis studies [Kamath 
[6]].

In many situations the observed signal is modeled as a sum 
of sinusoids with random amplitude [Wehner [7]] [Li; 1998]. The 
randomness could be imbedded in the additive noise term or could 
be modeled by itself. The random amplitude situation occurs for 
example with fading channels, fluctuating targets [Van Trees [8]], 
random media … etc [Barkat [9]]. In this report, the focus is on the 
estimation of the instantaneous amplitude and the instantaneous 
frequency of the EEG bands. The random frequency could be modeled 
as an AR process, MA process, or a polynomial [Benidir, et al. [10,11]]. 
The coefficients of the model are estimated adaptively using the 
least mean square algorithm (LMS), the recursive least square (RLS) 
algorithm, or others such as hidden Markov models [IEEE [1,12]]. 
Other methods, based on stochastic calculus, were developed to tackle 
the problem of the estimation of stochastic amplitude and stochastic 
phase [Abutaleb, et al. [13-15]]. These methods differ in the proposed 
model for the amplitude and or phase. In this report, the frequency 
is represented as an Ornstein-Uhlenbeck stochastic process, while 
the amplitude is time varying but unknown. In Section II, we present 
the EEG parameter estimation problem and the commonly used 
TEO. In Section III, we introduce our proposed approach based on 
adaptive filters and we derive the estimation equations for both the 
instantaneous amplitude and the frequency. In Section IV, we present 
simulation and real data results. We also present conclusions and 
summary.

Problem Formulation
In this section we present the problem at hand and present the 

conventional TEO to estimate the instantaneous amplitude and 
frequency. Considering the multiple characteristic bands of EEG, we 
can also interpret the EEG as a multicomponent AM-FM signal. An 
EEG signal can thus be written as a linear combination of amplitude 
and frequency modulated components.

Let the observed EEG be defined as s(t) and given as:

( ) ( )sin[ ( )]........................(1)i i
i

s t A t tφ=∑
Where ( )iA t  ith instantaneous random amplitude

( )i tφ  ith instantaneous random phase

In this report, a band pass filter is used to separate the different 
EEG bands (delta, theta, alfa, beta, and gamma). Thus, the focus is on 
one band at a time. The same process could be repeated for other 
bands.

Let the received real signal, z(t), after band pass filter with random 
amplitude be modeled as:

( ) ( )sin[ ( )]........................(2)z t A t tφ=

( ) 2 ( ) .......................(2 )t f t t aφ π ϕ= +

Where f(t) follows an OU process and is the unknown but 
deterministic constant phase.

In TEO method, we assume slowly varying amplitude. Taking the 
first derivative with respect to time of the signal z(t) we get:

( ) ( )(2 )cos[ ( )].............(3)dz t A t f t
dt

π φ=

Taking the second derivative with respect to time, assuming 
constant amplitude, we get:

2
2 2

2

( ) ( )(2 ) sin[ ( )] (2 ) ( ).............(4)d z t A t f t f z t
dt

π φ π= − = −

Define the energy tracking operator 
( )( )z tΨ

  as:

( )
2 2

2

( ) ( )( ) ( )dz t d z tz t z t
dt dt

 Ψ = −  
    ……….. (5)

( ){ } ( )2 2( ) 2 cos[ ( )] ( ) 2 sin[ ( )] ( )sin[ ( )]A t f t A t f t A t tπ ϕ π ϕ ϕ= +

( ) { } ( )2 22 2 2 2( ) 2 1 sin [ ( )] ( ) 2 sin [ ( )]A t f t A t f tπ ϕ π ϕ= − +

Which has a discrete version: ( )22 ( ) 2A t fπ=
2( ) ( ) ( 1) ( 1)z n z n z n z nψ = − − +

2 2( ) ( ) ( 1) ( 1) /z n z n z n z nψ  = − − + ∆ 

Applying the TEO we get:

2 2( ) ( )(2 ) .....................(6)z t A t fψ π=

2 4( ) ( )(2 ) ....................(7)dz tand A t f
dt

ψ π=

Hence the estimates of the instantaneous amplitude and the 
instantaneous frequency are obtained as:

( )[ ]
2 ) ................(8)

[ ( )]

dz t
dtf

z t

ψ
π

ψ
=

[ ( )]( ) ...............(9)
( )[ ]

z tand A t
dz t

dt

ψ

ψ
= ±

The Proposed Adaptive Filter Based Approach
In this section we present in some detail the proposed approach 

to find an estimate of the amplitude and the frequency of the band 
passed signal. The summary of the steps follows: 

1)	 An OU model is assumed for the frequency while keeping 
the phase deterministic but unknown, 

2)	 We then develop the adaptive filter to estimate the frequency 
assuming constant amplitude of unity magnitude, 

3)	 Using the estimated frequency, a sinusoidal wave is 
generated, 
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4)	 This sinusoidal wave with unity amplitude but random 
frequency is used as a reference signal, 

5)	 An adaptive noise cancelling (ANC) filter, with the estimated 
sine wave as reference, is used to find an estimate for the time 
varying amplitude through division or others, 

6)	 We use a hybrid approach where the estimated frequency 
is substituted in the TEO equations to get an estimate of the 
instantaneous amplitude, 

7)	 Finally, the estimated amplitude/frequency is compared to 
the TEO based amplitude/frequency.

The frequency f(t) is modeled as an Ornstein-Uhlenbeck process. 
The stochastic differential equation (SDE) that describes the 
frequency is given as [Abutaleb, et al. [16]]:

( ) [ ( )] ( )...........(10)df t f t dt dB tα β σ= − +
The model expresses a signal that is, randomly, bouncing around 

a constant value β . The strength of the randomness is controlled by
σ . The frequency f(t) might take an excursion away from the mean
β . It eventually returns to this meaning. The average length of these 
excursions is controlled by the parameterα . Other forms of f(t) are 
also valid and might be useful [Neftci [17]]. 

An Autoregressive Model for the Random Frequency
A single sine wave, X(t), is modeled as:

1 2( ) ( 1) ( 2) ( )...........(11)X n a X n a X n v n= − − − − +

Where )(nv  is white Guassian noise with zero mean and unity 
variance, 1a  and 2a are unknown quantities that determine the 
frequency f according to the equation:

1 / 2.............(12 )f a aα = −

21
2

2

( ) ..................(12 )f
aa b
a

β = ± −

arctan / (2 )...............(12 )f

f

f c
β

π
α

  
= ∆      

where ∆ is the sampling interval. Notice that the arctan 
operation yields the phase between “ π− ” and “ π+ ”. Thus, we 
have a sine wave X(n) with frequency f. The phase is determined from 
the initial conditions X(-1) and X(0). To obtain an initial guess for 
the frequency, we assume that we have a sine wave with unknown 
frequency and unknown phase. The amplitude is assumed to be of 
unity magnitude. We use least square between the observed EEG 
signal and the assumed sine wave, to find an initial guess for the 
frequency. Thus, initial guesses are obtained for 1a , 2a , X(-1) and 
X(0).

We use the LMS algorithm to find an updated estimate of the 
frequency. We first estimate the changing coefficients according to 
the equation:

 

( 1) ( ) ( ) ( ), 1, 2...........(13)k ka n a n X n k e n kµ
∧ ∧

+ = + − =

( ) )( ) sin(2 )( ) )..............(14)e n EFG n f n n tπ ϕ= − ∆ +
Where

 
)(nEEG is the observed band limited EEG signal, and 

the estimated frequency is given as:

1( ) ( ) / 2.............(15 )f n a n aα
∧ ∧

= −

2
2

2
( )( ) ( ) ................(15 )
2f

a nn a n bβ
∧

∧ ∧  
 = ± −
 
 

( )
( ) arctan / (2 )............(15 )

( )

f
n

f

n
f n c

n

β
π

α

∧
∧

∧

 
 = ∆
  
 

The Adaptive Noise Cancelling Equations for the 
Amplitude

Once we have estimated the parameters of the OU process 
describing the amplitude and the parameters of the frequency, we 
move ahead and find an estimate for the amplitude itself. 

Remember that:

( ) ( )sin[ ( )], ( ) 2 ( ) ...........(16)z t A t t t f t tφ φ π ϕ= = +

( ) [ ( )] ( )...........(17)and df t f t dt dB tα β σ= − +

We could use the estimate  
( )( )

sin[ ( )]

z tA t
tφ
∧=  except for the 

discontinuities.

Instead, we take the log of the observations. Thus,

( ) log ( ) log ( ) log(sin[ ( )])...........(18)x t z t A t tφ= = +
We also have an estimated sine wave. Thus, we generate a 

reference signal )(ˆ ty  as:

( )ˆ ˆˆ( ) log sin 2   ..............(19)y t f tπ φ= +

The observed signal (x(t)=log z(t)) is made of two parts: (1) log 
)(tA  and (2) ( ))](sin[log)( tty φ= . An estimate )(ˆ ty of the second 

part, y(t), is available. In adaptive noise cancelling we pass the 
estimated signal )(ˆ ty  through an adaptive filter and subtract from 
x(t) to find an estimate for log )(tA [Abutaleb, et al. [16]]. Specifically.

Define
( )ˆ ˆˆ ˆ( ) ( ) ( ) ( ) log sin 2   ( ) .............(20)i i

i i
x n h n y n i h n f n i tπ φ= − = − ∆ +∑ ∑

( )ˆˆ ˆ( ) ( ) ( ) log ( ) log ( ) log sin[ ( )] ( ) ( )..............(21)i
i

e n x n x n A n A t t h n y n iϕ= − = = + − −∑

{ }2( ) ( ) .............(22)n E e nε =
Where t∆ is the sampling interval, )(nhi  are the adaptive filter 

coefficients that will be recursively estimated. To find the unknown 
coefficients, )(nhi , we minimize the sum of squared error w.r.t. the 
coefficients )(nhi . The adaptive filter weights, 

)(ˆ nhi , are updated 
through the least mean square (LMS) algorithm as:
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ˆ ˆ( 1) ( )  ( ) ( )..............(23)i ih n h n e n y n iµ+ = + −

We then take the exponent of the estimated )(ˆlog nA from eqn. 
(III. 10) to get an estimate for the instantaneous amplitude )(ˆ nA
. Unfortunately, this estimate usually has discontinuities. We use a 
moving average (MA) filter to smooth away these discontinuities. 
Notice that there is an ambiguity in the sign of the amplitude A(t) 
unless it is assumed to be positive value. The TEO will be used for 
comparison with the proposed approach. 

A Hybrid Solution
Since TEO has good amplitude estimation and bad frequency 

estimation, one could use the estimated frequency, from the adaptive 
filter, to get an estimate for the amplitude. Specifically, if we have an 
estimate f̂  for f(t) (see equation III. 6c) we could use the expression

( ) ( )2
2 ˆ( ) ( ) 2 ...............(24)z t A t fπΨ =

To get an estimate )(ˆ tA  for A(t) as:
( )

( )
( )ˆ( ) ................(25)ˆ2

z t
A t

fπ

Ψ
=

where ( ) [ ] 22 /)1()1()()( ∆+−−=Ψ nznznznz
and ∆ is the sampling interval. This approach yielded better 

results even at SNR less than 10 db.

Summary of the Proposed Algorithm

1)	 Use band pass filter to isolate each frequency component

2)	 Use the FFT to find initial estimates of frequency and 
amplitude

3)	 Use least square to find the estimates of the frequency and 
phase.

4)	 Use the adaptive filter to find estimates of the instantaneous 
frequency.

5)	 Use adaptive noise cancelling filter to find an estimate of the 
amplitude.

6)	 The artificial speckle noise through the moving average 
(MA) filter. 

7)	 Use the hybrid approach to find an estimate of the amplitude.

Simulation and Real Data (Figures 1& 2)
In this section we simulate, for different signal to noise ratio, a 

sine wave with time-varying frequency that follows an OU process. 
We show the results of the estimation using the steps described in 
Section III. We also use the TEO operator to find the estimates of the 
amplitude and the frequency. We then apply the same methods to real 
EEG data.

Figure 1: The Fourier transform of the pure sine and the sine with random amplitude
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Figure 2: The pure sine and the sine with random amplitude.

The sampling interval is taken to be 10 msec, the frequency is 
12 Hz., the phase is 

/ 4π . The frequency f(t) is modeled as an OU 
process

[ ]( ) ( )  ( ).............(26)df t f t dt dB tα β σ= − +

with coefficients = 10, 1 2andα β σ= = =   

In (Figure 3), we show the simulated frequency using equation.
We use the SNR of the estimate for comparison. The SNR for the 

estimate is defined as:

Figure 3: The simulated stochastic amplitude using the OU process.
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Figure 4: True simulated amplitude and estimated amplitude using adaptive noise cancelling.

Figure 5:  Simulated amplitude and adaptive noise cancelling filter estimated amplitude after passing through moving average 
filter.

‘
( )

2

2

( )
      10  log ............(27)

ˆ( ) ( )
k

k

A k
SNRE

A k A k
=

−

∑

∑

Following the estimation steps of Section III, we present, 
in (Figure 4), the estimated amplitude using the adaptive noise 
cancelling filter equations. In (Figure 5), we present the same 

amplitude after passing through the moving average filter. The SNRE 
was 11.2 db.

In (Figure 6), we present the estimated amplitude using the TEO. 
In (Figure 7) we present the amplitude after passing through the MA 
filter. The SNRE was 8.5 db. We now present the results of real data of 
EEG. As a demonstration, we use the signal coming from T3-AV. The 
estimated amplitudes, using TEO and the proposed method, for the 
bands, delta, alfa, theta, and beta are shown in (Figures 8-11). Notice 
that the estimated amplitude using the TEO method tends, in most 
cases, to be larger than that using adaptive noise cancelling.
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Figure 6: Simulated amplitude and estimated amplitude using TEO.

Figure 7: Simulated amplitude and estimated amplitude using TEO after passing through moving average filter.

Figure 8: Delta band, estimated amplitude using adaptive noise cancelling followed by MA filter, estimated amplitude using TEO 
followed by MA filter
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Figure 9: Theta band, estimated amplitude using adaptive noise cancelling followed by MA filter, estimated amplitude using TEO 
followed by MA filter.

Figure 10: Alfa band, estimated amplitude using adaptive noise cancelling followed by MA filter, estimated amplitude using TEO 
followed by MA filter.

Figure 11: Beta band, estimated amplitude using adaptive noise cancelling followed by MA filter, estimated amplitude using TEO 
followed by MA filter.
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In summary, the proposed approach has the following advantages 
over the TEO 

1)	 Better frequency estimation accuracy as shown in 
simulation.

2)	 The estimation of the mean reverting value of the amplitude 

β. This estimate gives an indication of the average value of the 
amplitude and will tell us whether the instantaneous amplitude 
estimates are reasonable or not. 

3)	 The estimation of the frequency and the phase. So even if the 
frequency is slightly changing, this estimate will guide us through the 
calculations. This is unlike TEO where you are not sure about the real 
values of the frequencies.

The presented stochastic calculus-based approach could be 
extended to the case that both the amplitude and phase are randomly 
changing. This and other issues are currently under investigation [Y 
Cho, et al. [18]].

References
1.	 IEEE Proceedings (1996) Special Issue on Instantaneous Frequency 

Estimation 84(9).

2.	 Van Zaen J (2012) Efficient Schemes for Adaptive Frequency Tracking 
and their Relevance for EEG and ECG, Ph. D. Dissertation, ÉCOLE 
POLYTECHNIQUE FÉDÉRALE DE AUSANNE, Switzerland.

3.	 QH Huang, J Yang, Y Zhou (2008) Bayesian nonstationary source separation, 
Neurocomputing 71: 1714-1729. 

4.	 Maragos P, J Kaiser, T Quatieri (1992) On separating amplitude from 
frequency modulations using energy operators”, [Proceedings] ICASSP-92: 
1992 IEEE International Conference on Acoustics, Speech, and Signal 
Processing. 

5.	 Pal S, B Biswas (2012) On the Fundamental Aspects of Demodulation. 
Signal Processing: An International Journal (SPIJ) 6 (3): 86-96.

6.	 Kamath C (2014) Automatic seizure detection based on Teager Energy 
Cepstrum and pattern recognition neural networks. QScience Connect 
2014 (1).

7.	 Wehner D (1995) High Resolution Radar, Artech House, Mass, USA. 

8.	 H Van Trees (1970) Detection, Estimation and Modulation Theory, Part III, 
John Wiley, NY.

9.	 Barkat B (2001) Instantaneous Frequency Estimation of Nonlinear 
Frequency Modulated Signals in the Presence of Multiplicative and Additive 
Noise.IEEE Trans. Signal Processing 49(10): 2214-2222.

10.	M Benidir, A Ouldali (1999) Polynomial Phase Signal Analysis Based on 
the Polynomial Derivatives Decomposition. IEEE Trans. Signal Processing 
47(7): 1954-1965.

11.	Goto S, M Nakamura, K Uosaki (1995) Online Spectral Estimation of 
Nonstationary Time Series Based on AR Model Parameter Estimation and 
Order Selection with a Forgetting Factor. IEEE Trans. Signal Processing SP-
43 (6): 1519-1522.

12.	Boashash B (1992) Estimating and Interpreting the Instantaneous 
Frequency of a signal. Proc IEEE 80(4).

13.	Abutaleb A (2013) The estimation of the instantaneous amplitudes of 
sum of sinusoids with unknown frequencies and phases: The martingale 
approach”, Signal Processing 93 (4): 811-817.

14.	Abutaleb A (2005a) Instantaneous Frequency Estimation When 
the Amplitude is a Stochastic Process Using Stochastic Calculus and 
Bootstrapping. Circuits, Systems and Signal processing 24 (1): 35-52.

15.	Abutaleb A (2005b) Instantaneous Frequency Estimation Using Stochastic 
Calculus and Bootstrapping., EURASIP Journal on Applied Signal Processing 
12: 1886-1901.

16.	Abutaleb A (1988) Improvement in Adaptive Noise Canceling Using a 
Nonlinear Filter Based On The Pontryagin Minimum Principle. Circuits, 
Systems and Signal processing 7(1): 57-78. 

17.	Neftci S (2000) An Introduction to the Mathematics of Financial Derivatives, 
Academic Press, New York. 

18.	Y Cho, S Kim, E Powers (1991) Time-Varying Spectral Estimation Using AR 
Models with Variable Forgetting Factors. IEEE Trans. ASSP 39(6): 1422-
1426.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2023.48.007621

Ahmed S Abutaleb. Biomed J Sci & Tech Res

https://dx.doi.org/10.26717/BJSTR.2023.48.007621
https://www.sciencedirect.com/science/article/abs/pii/S092523120700104X
https://www.sciencedirect.com/science/article/abs/pii/S092523120700104X
https://www.slideshare.net/CSCJournals/on-the-fundamental-aspects-of-demodulation
https://www.slideshare.net/CSCJournals/on-the-fundamental-aspects-of-demodulation
https://www.qscience.com/content/journals/10.5339/connect.2014.1
https://www.qscience.com/content/journals/10.5339/connect.2014.1
https://www.qscience.com/content/journals/10.5339/connect.2014.1
https://www.researchgate.net/publication/3318096_Instantaneous_frequency_estimation_of_nonlinear_frequency-modulated_signals_in_the_presence_of_multiplicative_and_additive_noise
https://www.researchgate.net/publication/3318096_Instantaneous_frequency_estimation_of_nonlinear_frequency-modulated_signals_in_the_presence_of_multiplicative_and_additive_noise
https://www.researchgate.net/publication/3318096_Instantaneous_frequency_estimation_of_nonlinear_frequency-modulated_signals_in_the_presence_of_multiplicative_and_additive_noise
https://www.semanticscholar.org/paper/On-line-spectral-estimation-of-nonstationary-time-a-Goto-Nakamura/e7afdddaf88ec18389d6a374c836d375811afd9a
https://www.semanticscholar.org/paper/On-line-spectral-estimation-of-nonstationary-time-a-Goto-Nakamura/e7afdddaf88ec18389d6a374c836d375811afd9a
https://www.semanticscholar.org/paper/On-line-spectral-estimation-of-nonstationary-time-a-Goto-Nakamura/e7afdddaf88ec18389d6a374c836d375811afd9a
https://www.semanticscholar.org/paper/On-line-spectral-estimation-of-nonstationary-time-a-Goto-Nakamura/e7afdddaf88ec18389d6a374c836d375811afd9a
https://www.researchgate.net/publication/256994314_The_estimation_of_the_instantaneous_amplitudes_of_sum_of_sinusoids_with_unknown_frequencies_and_phases_The_martingale_approach
https://www.researchgate.net/publication/256994314_The_estimation_of_the_instantaneous_amplitudes_of_sum_of_sinusoids_with_unknown_frequencies_and_phases_The_martingale_approach
https://www.researchgate.net/publication/256994314_The_estimation_of_the_instantaneous_amplitudes_of_sum_of_sinusoids_with_unknown_frequencies_and_phases_The_martingale_approach
https://dl.acm.org/doi/abs/10.1109/78.136549
https://dl.acm.org/doi/abs/10.1109/78.136549
https://dl.acm.org/doi/abs/10.1109/78.136549
https://biomedres.net/submit-manuscript.php
https://biomedres.us/
https://dx.doi.org/10.26717/BJSTR.2023.48.007621

