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ABSTRACT

Anti-cytokines autoantibodies (ACAA) are types of autoantibodies against soluble immune factors 
and may be mirrored by autoimmune disease biomarkers. The manifestation of secretion of these 
antibodies is associated to primary immunodeficiency (PID), but also directly or indirectly related 
to infectious disease occurrence, which could be assumed as a consequence of cytokine deficiency. 
These antibodies are of their mature antibody isotype and could exert functional humoral response 
against target cytokines. However, no immunoglobulin deficiency cases have been observed in 
association with ACAA secretion, and the function and secretion of ACAAs were not always correlated 
to pathogenesis. Therefore, the mechanisms underlining the presence of these antibodies remain 
poorly known and the findings are somehow debatable between studies. This review is trying to 
summarize the recent findings on clinical relevance of ACAAs and related pathologies to which 
an unneglectable fraction of autoantibodies are associated. Also, it is attempting to establish the 
missing connections of these autoantibodies found in several autoimmune or infectious diseases by 
proposing the possible mechanisms associated to primary immunodeficiency and genetic defect. At 
the end, we also try to rationalize how we could learn from these atypical antibodies and use them 
as prognosis biomarkers or therapeutic targets of different pathologies.
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Introduction
Cases of anti-cytokines autoantibodies (ACAAs) increasingly 

reported were firstly recorded in late 1980s [1-3]. Regardless the titer 
and the phenotypes, they were initially found in both healthy subjects 
and patients manifesting chronical inflammation, autoimmune 
diseases, in a highly variable and infrequent manner3. There are five 
families of cytokines: chemokines, interferons (IFNs), interleukins, 
lymphokines, and tumor necrosis factor (TNFs), and reported cases 
of ACAAs were shown against most of these families, but were not 
able to recognize all the existing cytokines. In addition, ACAAs were 
also reportedly found in different infectious diseases [4-7]. These 
infectious diseases may potentiate autoimmune disorders, or chronical 
inflammation, as consequences of ACAAs secretions that potentially 
neutralize the cytokine which we could call ‘cytokine deficiency’. 
The correlation between ACAAs and pathologies was difficultly 
made due to their unproportionable titers. It was recently shown 
that primary immunodeficiency (PID) [1] which impacts different 

layers of immune system, including T cell and B cell dysfunctions, 
may play a pivotal role in triggering the secretions of these ACAAs [8-
12]. Of note, these ACAAs are also of their mature phenotype, mostly 
immunoglobulin G (IgG), suggesting its full maturation status despite 
of primary immunodeficiency manifestation that may impact B cell 
functions on which the secretion of ACAAs depend [7,13,14]. Some 
of these ACAAs are potent, functional, and antigen specific, showed 
by in vitro neutralization assays, and of considerable titer compared 
to other autoantibodies and antibodies against pathogens. This mini 
review is approaching 

1)	 The correlation between appearance of ACAAs and clinical 
consequences of autoimmune and infectious diseases;

2)	 The relevance between primary immunodeficiency and 
appearance of ACAAs;

3)	 The usefulness of using these ACAAs as prognosis 
biomarkers or pharmaceutical targets of immunotherapy.
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Cases of ACAAs and Clinical Significances Related to 
Autoimmune Disorders

A list of autoimmune pathologies related to ACAA clinical 
implications were summarized in Table 1. The remarkable cases are 
for example, ACAA against IL-1α in rheumatoid arthritis (RA) patients 
[15-17] or against IFN-α and G-CSF in systemic lupus erythematosus 
(SLE) patients [18,19] and interferon autoantibodies in Sjogren’s 
syndrome (SS) patients [20,21] but also those against TNF-α and 
IFN-γ in multiple sclerosis (MS) [22]. In some other autoimmune 
diseases, the symptoms are more diverse and implicate diverse types 
of cytokines, in majority pro-inflammatory cytokines like IL-1α, IL-6, 
TNF-α. While ACAAs could also target some other cytokines i.e. IL-2, 
CCL3 (T1D) [23,24] IL-3 (Felty’s syndrome) [25] BAFF, APRIL (CVID 
or sIgAD) [26] suggesting the phenotype of these cytokines may not 
be directly associated to ACAAs secretion. Most of the autoimmune 
diseases involving ACAA are systemic likely to RA [15-17] SLE [27] MS 
[22] SS [20,21] and Type 1 diabetes (T1D) [23,24] and some others 

likely to pulmonary alveolar proteinosis (PAP) [28] Interstitial lung 
disease (ILD) [29] are local diseases. Overall, the presence of ACAAs 
is not considered as direct pathogenic factor of the autoimmune 
diseases. (Table 1) also summarizes the correlation between the 
titer of ACAA and clinical significance of these autoimmune diseases. 
Half of these cases were not associated to the disease severity, while 
some cases showed significant correlation of elevated titer of these 
ACAAs and disease severity i.e. RA, MS, Osteoarthritis (OA) [30] 
APECED [8,31] IPEX [10] and T1D [23,24] Of interest, for the same 
type of autoimmune disorder, regardless different types of ACAAs 
were consistently detectable, the correlation between ACAAs and 
clinical relevance was not always in the same line, like SLE [18,19] 
To summarize, some cytokines are related to the pathological stage 
of autoimmunity RA and IL-1α, Psoriasis and IL-17A, SLE and IFN-
α-thus secretion of these ACAAs should be protective against the 
development of the disease. However, for some cases correlation 
cannot be fully established between the secretion of these cytokines 
and the production of these ACAAs.

Table 1: Clinical impact of autoantibodies targeting cytokines in autoimmune diseases.

Diseases Cytokines Clinical relevances

RA IL-1α Higher titer associated with benign form, lower CPR and ESR [16]

Psoriasis

IFN-α No association between severity and anti-cytokine Abs [70]

TNF-α No association between severity and anti-cytokine Abs [71]

IL-22 No association between severity and anti-cytokine Abs [73]

Il-17A High titer of anti-cytokine Abs associated with severity [73]

MS TNF-α, IFN-a, IL-4, IL-10 High titer of anti-cytokine Abs associated with severity [22]

Osteoarthritis OPN(ETA-1) High titer of anti-cytokine Abs associated with severity [74]

SLE
IFN-α Not clear [75]

GM-CSF High titer of anti-cytokine Abs with neutropenia [76]

SSc IL-6 High titer associated with severity with the limited form. High titer correlates 
to SSc positive patients. [77]

APS-1/ APECED
IL-17, IFN-a, IL-22 High titer of anti-cytokine Abs associated with APS-I causing CMC [58,59]

IFN-ω, IFN-α2 High titer in patients [59]

T1D
IL-2 High titer associated with increased incidence of diabetes [78]

CCL3 Positive for new-onset patients [24]

FS IL-3, GM-CSF, G-CSF High titer of anti-cytokine Abs associated with cytopenia, only associated to 
IL-3 [25]

PAP GM-CSF No association between severity and anti-cytokine. Sensitive and specific 
biomarker [28]

PAD/CVID BAFF, APRIL, IL-21 No association between severity and anti-cytokine Abs [26]

MG IFN-α, IFN-ω, IL-12 No association between severity and anti-cytokine Abs [79]

ILD IL-1α High titer of anti-cytokine Abs associated with severity [80]

SS IFN-γ, -α and, -ω No association between severity and anti-cytokine Abs [20,21]

SCID IFN-α or -IFN-ω or IL-12 High titer of anti-cytokine Abs associated with severity [81]

IPEX IFN-α High titer of anti-cytokine Abs associated with Treg deficiency [10]

Pure red-cell aplasia EPO High titer of anti-cytokine Abs associated with low red blood cell from bone 
marrow [72]

Note: ACAA: autoantibodies against cytokine, RA: Rheumatoid Arthritis; MS: Multiple Sclerosis; SLE: Systemic Lupus Erythematosus; SSc: Systemic 
sclerosis; .APS-1: Autoimmune polyglandular syndrome type 1; APECED: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; T1D 
diabetes; FS: Felty’s syndrome; PAP: Pulmonary Alveolar Proteinosis; CVID: Common variable immunodeficiency; PAD: Peripheral artery disease; MG: 
myasthenia gravis; ILD: Interstitial Lung Disease; SS: Sjorgen’s Syndrome; SCID: Severe combined immunodeficiency; IPEX: Immunodysregulation 

polyendocrinopathy enteropathy X-linked
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Cases of ACAAs and Clinical Significances Related to 
Infectious Diseases

Similar types of ACAAs could be found in both autoimmune 
disorders and infectious diseases, and they are highly potent to 
neutralize these cytokines. Less cases were reported in particular 
in chronic mucocutaneous candidiasis (CMCC) [32] oropharyngeal 
candidiasis (OC) [13] Staphylococcal skin infection [6,13] and in HIV-1 
[7] of which immunodeficiency is a hallmark [7] mirrored by those life-
threating patients contracting SARS-Cov2 with an immunodeficient 
profile [5,33] The cytokines that these infectious disease-associated 

ACAAs recognized, are prone to be inflammatory and antimicrobial. 
Interestingly, these studies almost all pointed out ACAAs titers 
are positively correlated to the severity and incidence of infection, 
suggesting the hypothesis of ‘cytokine deficiency [1] In particular, 
some of these infections were of primary immunodeficiency which 
could result in the onset of autoimmune disorders, but also other 
infections (case of CMCC and OC or staphylococcal skin infection). 
Likely, the secretion of these ACAA is not a consequence of the 
infectious diseases but other mechanisms mediating this immune 
process. An updated list of infectious disease-associated ACAA was 
shown in (Table 2).

Table 2: Clinical relevance of infectious diseases with regards to autoantibodies production against cytokine-related infection.

Disease Cytokines Clinical relevance

SARS-CoV-2 IFN-α2 and IFN-ω High titer of anti-cytokine Abs associated with 
severe pneumonia [5]

Disseminated non-tuberculous mycobacterial 
disease

IFN-g High titer of anti-cytokine Abs associated with 
severe mycobacterial infection [65]

IFN-g High titer of anti-cytokine Abs associated with 
severe mycobacterial infection [4]

chronic mucocutaneous candidiasis (CMCC) IL-17α, IL-17F, and IL-22 High titer of anti-cytokine Abs associated with 
CMC associated to APS-I [31,32]

oropharyngeal candidiasis (OC)
IL-22 High titer of anti-cytokine Abs associated with 

OC associated to APS-I [13]

IL-17A, IL-17 High titer of anti-cytokine Abs associated with 
OC associated AIRE deficiency [13]

Staphylococcal skin infection

IL-17A, IL-17F, and IL-22
High titer of anti-cytokine Abs associated with 

CMC associated increased incidence of skin 
infection [66,67]

IL-6
High titer of anti-cytokine Abs associated with 

CMC associated increased incidence of skin 
infection [6]

HIV TNF-α High titer of anti-cytokine Abs associated with 
infection severity [7]

Invasive, non-typhoidal Salmonella infection IFN- g High titer of anti-cytokine Abs associated with 
infection severity [68,69]

Cerebral Cryptococcus gattii infection GM-CSF High titer of anti-cytokine Abs associated with 
infection severity [41,62]

Invasive staphylococcal infections IL-6 High titer of anti-cytokine Abs associated with 
infection severity [6]

Pneumococcal infections IL-6 High titer of anti-cytokine Abs associated with 
infection severity [55]

Note: ACAA: autoantibodies against cytokine, HIV: human immunodeficiency virus, Abs: antibodies

Involvement of Primary Immunodeficiency
It is recently considered that, the presence of ACAA is linked 

to PIDs [34] resulting in disorders of humoral immunity [35] 
(B-cell differentiation or antibody production), cellular immunity 
(T-cell defective functions) or even combinatorial B-cell and T-cell 
abnormalities, as a result of genetic defects [1,9,11] Regardless, 
PIDs are of a generic description of immune response dysfunction 
comprising 400 different types, and different pathological 
manifestations of PIDs could be partly shared. The majorly described 
types of PIDS involve Autoimmune Lymphoproliferative Syndrome 
(ALPS) [36,37] APS-1/APECED [38] B-cell expansion with NF-κB 

and T-cell anergy (BENTA Disease) [39] Caspase Eight Deficiency 
State (CEDS) [40] Immunodysregulation polyendocrinopathy 
enteropathy X-linked (or IPEX) [10] all of which were characterized 
by a particular genetic disorder and showed significant increase 
of ACAA titers against cytokines shown in (Table 3). As mentioned 
above, the reported cases of ACAAs were not overall present for all 
these PID patients, which were previously described, and so far, the 
presence of ACAA was only documented in APS-1/APECED patients 
contributing to autoimmune disorders, the other reported cases were 
of infectious disease including majorly bacterial pathogens. These 
infections were partially associated to different levels of primary 
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immunodeficiency described in (Table 3). Interestingly, for those 
primary immunodeficiencies, several genes affected by the primary 
immunodeficiency contributing to the function of these cytokines 
could differentially affect the production of ACAAs. So far, PID leads 
to majorly opportunistic infection, i.e. Pulmonary alveolar proteinosis 
and Staphylococcal skin infections in which defect of several genes 
was involved, which could be mirrored by the effect of deficiency 

of cytokines regulating anti-pathogen immune response [41] 
Nevertheless, the observation could not well explain how primary 
immunodeficiency affects autoimmune disorders despite of APS-1/
APECED patients with AIRE gene deficiency [8] which indicates other 
molecular mechanisms are probably involved in the progression of 
these diseases.

Table 3: Influence of gene mutation on the secretion of ACAAs.

Primary immunodeficiency Gene affected Cytokines Correlation between PID and 
ACAAs

APS-1, APECED

AIRE IL-17, IFN- α, IL-22 Correlated [58]

IFN IFN- ω, IFN-α2 Correlated [59]

RAG1, NFKb2 IFN-α Correlated [10]

Environmental mycobacterial 
infection IFNG IFN- γ Correlated [60]

Invasive, non-tyroidal Salmonella 
infection IFNGR1, IFNGR2 IFN- γ Correlated [61]

Pulmonary alveolar proteinosis CSF2RA, CSF2RB GM-CSF Not Correlated [24, 62]

Staphylococcal skin infections IL-6R, MyD88, IRAK4 IL-6 Not Correlated [6,63,64]

IPEX FOXP3 IFN-α Correlated [10]

Note: ACAA: autoantibodies against cytokine, APS-1: Autoimmune polyglandular syndrome type 1, APECED: Autoimmune polyendocrinopathy-

candidiasis-ectodermal dystrophy, IPEX: Immunodysregulation polyendocrinopathy enteropathy X-linked

Defective T Cells Tolerance Hypothesis
So far, APS-1/APECED patients with AIRE gene deficiency were 

shown to induce autoantibodies secretion against cytokines in 
homeostasis status, but also against other auto-antigens, which 
triggered different types of subsequent autoimmune disorders 
including hepatitis, severe malabsorption, and tubule, interstitial 
nephritis, Type I diabetes (T1D). The clinical consequences of 
Immunodysregulation polyendocrinopathy enteropathy X-linked 
(IPEX) syndrome, one remarkable case involving ACAA secretion, 
are mediated by genetic mutation introduced in the chromosal level, 
leading to transcription factor Foxp3 erroneous expression (located in 
chromosome Xq11.23-Xq13) [10] This abnormality eventually results 
in the loss or dysfunction of immunosuppressive Treg cells [42,43] 
T. Therefore T cell tolerance breakdown in the periphery, essentially 
results in the augmented secretion of ACAAs against IFN-α, actively 
involved in the pathogenesis of different autoimmune diseases where 
ACAAs could be detected (Table 1). Differently, APECED patients may 
manifest a superior degree of immune disorder by loss of expression 
of tissue-restricted antigens (TRA) in the thymus which leads to 
selection dysfunction of central tolerance impacting all the T cell 
populations and subsequently B cell function [44,45].

Defective B Cell Tolerance Hypothesis
To another fundamental immunology point of view, plasma cells 

are terminally differentiated and non-dividing effectors of B cells 
producing and secreting antibodies, through long-lasting positive and 
negative signals via B-cell receptor (BCR) along with competition for 
survival factors such as BAFF (B cell activation factor). Overexpression 

of BAFF leads to increased number of B cell repertoire that have 
passed through selection process, including a lot of autoreactive B 
cells which escaped from bone marrow and periphery, and underwent 
deregulated BCR signaling they receive [46,47]. The process 
consisting of selection defect, but also unregulated secretion of BAFF, 
altogether leads to overexpression of antibodies which could involve 
ACA [26]. The B cell development related to ACAAs production is 
supposed to pass through canonical pathways of activation like other 
antibodies following successful maturation of immunoglobulin on the 
B cell surface, which suggests BCR signaling was not affected in the 
anti-cytokine antibodies producing cells. Elevated ACAAs in the sera 
of PAD/CVID patients were found against BAFF, APRIL (another B cell 
maturation cytokine), and IL-21 [48] but they were not associated 
with clinical outcomes, as this was contradictory to the function of 
BAFF and APRIL and the mature phenotype of T cells [26]. However, 
another study on PAD/CVID showed defective B cell tolerance 
on B cell receptor editing [9,49] in turn results in autoreactive B 
cell clone overproduction. To present B cell antigens, B cells form 
immunological synapses upon engagement of their B cell receptor 
(BCR) that is exposed at the surface of antigen presenting cells (APC). 
Synapse formation between B cells and APC promotes the extraction 
and the processing of immobilized antigens for presentation on MHC 
class II molecules to primed CD4+ T cells [48,50] Different from T cell 
tolerance, B cell tolerance occurs in the bone marrow and periphery, 
where thymic defect may not be directly mirrored by autoreactive B 
cell development but through T cells [51]. 

In the same page, primary immunodeficiency indeed was also 
shown associated to B cell-tolerance breakdown [52] reflected by 
the observation in MS patients with IPEX syndrome, manifesting 
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impaired Treg production therefore accumulated autoreactive B cell 
clones [53]. The antibodies produced by these clones target not only 
cytokines but other self-antigens involved in MS patients [53]. Many 
different clinical cases have been also found with B-cell development 
associated genetic defects, regardless in the central or in the periphery, 
both of which direct the decrease of immature and mature antibody 
secreting cells leading to infection due to the loss of protection by B 
cells, which is in contradiction to ACAAs development [9].

ACAAs, Biomarkers of Autoimmune Diseases and 
Infectious Diseases?

Persistent detection of ACAAs in autoimmune diseases and 
infectious diseases draws attention to use them as biomarker for 
prognosis and diagnosis, but also for therapeutic targets. Herein, for 
autoimmune diseases, several different cases have been repeatedly 
documented, which demonstrates the association of disease severity 
and the increase of certain ACAAs [22,25,54-59]. However, some 
contradictory results have also been observed in the same type of 
pathology, suggesting a more comprehensive analysis is required:

1)	 The disease progression of patients

2)	 The phenotype of different ACAAs and

3)	 The consequences of these ACAAs involved in the diseases. 

For infectious diseases, the link between the ACAAs and disease 
progression is clearer, reflected by the correlation between the 
infection severity and ACAAs secretion [4,7,13,31,32,41,60-64]. 
In particular the cytokines recognized by these ACAAs are pro-
inflammatory leading to ‘cytokine deficiency’, which has negative 
clinical outcomes for the patients. For certain diseases, i.e. SARS-
CoV-2, HIV and other bacterial infections, ACAAs against these 
cytokines could be relevant to stratify the stages of the diseases. 
At the end, these molecules are considered important evidences of 
primary immunodeficiency, which could be explained by the defect of 
genes involved in the production of these cytokines (Table 3).

Discussion
Autoantibodies to cytokines could lead to severe clinical 

consequences, as observed in several autoimmune diseases, i.e. RA, 
MS, SSc, T1D, APS-1, infectious diseases i.e. microbial infections, 
and in particular those ‘’idiopathic’’ diseases (Tables 1 & 2). Clinical 
relevance of a certain number of autoimmune diseases is associated 
with elevated titers of different cytokines, including majorly 
proinflammatory cytokines, IFN and TNF families. It could also affect 
some other cytokines involved in the adaptive immune responses i.e. 
on B cell [65,60], T cell but also other hematopoietic cells. The titers 
of these ACAAs are not always comparably similar in both healthy 
donors and patients. Moreover, some cases of healthy donors have 
been shown to have similar titers of ACAAs compared to patients 
[10,20,25,66] suggesting ACAAs production may not be consistent 
markers for all the diseases, and a more stratified categorization 
of the disease progression is needed to perform these correlation 
studies. Regarding ACAA-mediated infectious diseases, cytokine 

deficiency is the key to explain why these rare and atypical infections 
occur related to increase of ACAAs in the serum. These cytokines, 
utilized majorly by effector T cells engaged in pathogen clearance are 
in a comparably low level which leads to an impaired T cell function. 
Of note, several cases are associated to PIDs, suggesting ACAAs are 
of consequences of PID-associated genetic defect, which could be 
explained by the mechanisms contributing to cytokine deficiency. 
However there are few evidences showing the direct link between 
these types of genetic defects and ACAAs. Furthermore, we challenged 
the hypothesis of B-cell and T-cell tolerance breakdown leading to 
these ACAA production. Several cases of ACAAs are somehow directly 
associated to T-cell tolerance in the level of T cell function, which 
may subsequently impact autoreactive B cell proliferation. Of note, 
cases of primary B-cell immunodeficiency (B-PID), one type of B-cell 
tolerance defect, have been reported with the increases of different 
cytokines with genetic defect of protein kinase C (PKC) δ showed 
overexpressed IL-6 and IL-10 in the serum [49]. 

It would be interesting to see if the link between overproduction 
of cytokines and ACAAs could be established in this study. Altogether, 
B-cell tolerance mechanism may not be directly linked to ACAAs 
[67,68] but in a larger spectrum of autoantigens including the 
cytokines which could be triggered by other PID mediating different 
autoimmune diseases or infections. Identification of ACAAs is 
indeed very critical, and could improve our understanding about 
the prognosis at early stage, and the treatment of these diseases. For 
the prognosis, more sensitive multiplex ELISA specific for different 
types of ACAAs should be developed to follow from early stage the 
progression of disease. Some other approach using serum filtrating 
system by removing ACAAs may be of interest [29]. Eventually, a 
deeper genetic defect identification method based on multi-omics and 
deep learning should be developed to help to predict the correlation 
between ACAAs and progression of a certain kind of autoimmune 
disease or infection. At the end, the studies on the correlation of ACAAs, 
immunodeficiency and tolerances are to be intensively performed 
to use them as prognosis markers. Altogether, understanding the 
role of these ACAAs could help develop better targeted therapies, 
including monoclonal antibodies against the cytokines involved in 
the pathogenesis of diseases or antagonist against ACAA production 
when they are associated to the disease progression [69-80].

Conclusion
In this review, we described the appearance of ACAAs, and 

their correlations with different clinical consequences. First of all, 
we summarized all the studies in autoimmune diseases where the 
role of ACAAs is not fully associated to disease progression, and 
different types of cytokines are shown to contribute differentially to 
autoimmune diseases. While ACAAs have a preferential contribution 
to increase susceptibility to infections by a large spectrum of microbe 
pathogens. Primary immunodeficiency may be one mechanism that 
contribute to the secretion of ACAAs while its outcome may not be 
consistently associated, suggesting a multiple layer of immune defect 
may be engaged, leading to T cell and B cell tolerance in particular, 
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which are proposed to be direct consequences of ACAAs productions. 
However, the link between the pathogenesis of these diseases and 
the ACAAs production, is not fully supported by the studies from 
which a lot of researches are to be done. To the end, we recapitulated 
how we could benefit from the identification of ACAAs and their 
associated clinical outcomes, to develop better prognosis markers 
and more efficient therapies against autoimmune diseases, primary 
immunodeficiency but also infections associated to these immune 
disorders.
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