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ABSTRACT

The amount of kinesiology research produced has steadily risen over the previous decades. While much of 
the existing literature has utilized traditional hypothesis testing, the use of advanced statistical procedures 
is growing in popularity. Linear mixed-effect modeling is an extension of the traditional linear model and 
presents many advantages when used with study designs common in kinesiology or other intervention-
based research with multiple time points. Like a linear model, mixed-effect modeling allows for the inclusion 
of fixed effects, and simultaneously incorporates random variabilities across subjects, termed random effects. 
Therefore, linear mixed-effect modeling has a broader range of applications compared to repeated measures 
analysis of variance. Unfortunately, in kinesiology, many research groups who are unfamiliar with this 
technique, or the software needed to run these models appropriately, may be slow to adapt. Therefore, the 
purpose of this report is to present the reader with a brief background on linear mixed effect modeling and 
walk them through an example analysis. Example R syntax is provided in addition to a Kinesiology specific 
dataset. This tutorial is not meant to serve as an in-depth discussion on the theory of linear mixed-effect 
modeling; it is geared towards being a primer on how to implement these procedures. 
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Introduction
The volume of kinesiology and strength and conditioning research 

has dramatically risen over the previous two decades. A concordant 
increase in repeated measure-based intervention trials has also been 
noted. Traditional null hypothesis testing has been the cornerstone 
statistical tool throughout this time. These common techniques 
(e.g., factorial analysis of variance [ANOVA], linear regression 
modeling), while popular and well implemented, are not without 
flaw. Specifically, traditional ANOVA’s may be significantly impacted 
by missing data, the independence assumption, and unable to account 
for individual variability across participants. In accordance with the 
increased volume of research produced, there has been a concordant 
increased prevalence of advanced statistical such as linear mixed-
effect modeling. Unlike traditional linear models (e.g., ANOVA), linear 

mixed-effect models investigate the “condition of interest”, while 
simultaneously incorporating random variabilities across subjects that 
may be present within the data [1,2]. Linear mixed-models have been 
suggested as being superior to repeated measures ANOVA [3] for their 
ability to address missing data, clustering effects (which may bring 
bias in repeated measure ANOVA), or when the experimental design 
is unbalanced [4-6]. Unfortunately, this approach has not been fully 
adapted in the field of kinesiology, potentially due to the complexity 
of the modeling methodology. However, it has been suggested that 
guidance on proper implementations of novel statistical procedures 
may be useful [7,8]. Thus, the purpose of this manuscript is to serve as 
a tutorial on model genesis and interpretation. The authors intend to 
present the reader with the tools required to make their own decisions 
on how to build models which may fit their work best. We will carry 
out this task using the included kinesiology-specific example data.
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Linear Mixed-Effect Modeling Theory
Traditional linear models (i.e., ANOVA) performs hypothesis 

testing by assessing the presence or absence of fixed main effects 
(e.g., “group” effect; “time” effect). This is often expanded to assess the 
presence of an interaction effect of two (or more) fixed main effects 
(e.g., group X time effect). Linear mixed-effect modeling expands upon 
traditional linear models to include both fixed and random effects 
[9,10]. In brief, the inclusion of random effects, instead of fixed effects 
alone, within a model may reduce: 

A.	 Type 1 and 2 error rates [5], 
B.	 Allow for missing data within a model [11], and 
C.	 May increase power in small sample research by better 
allocating degrees of freedom. For further reading on the 
advantages of including random effects within statistical 
modeling, the reader is led to other works [1,5,12,13].

Statistical Software
There are many powerful statistical software options available. 

Some employ “point-and-click” procedures (i.e., SPSS), while others 
use syntax-based approaches (i.e., SAS, R) to carry out instructed 
calculations. R is a programming language for statistical computing 
and graphics production. Unlike other statistical programs (e.g., 
SPSS, SAS), it is free and open source, which has a plethora of 
support available through the Comprehensive R Archive Network 
(CRAN). Due to the almost unlimited supporting packages available, 
R is endlessly expandable and capable of a wide variety of statistical 
and graphical tasks. R is also available on three popular computing 
operating systems (i.e., Windows, MacOS, UNIX). These features make 
it flexible across various operating systems and scientific disciplines, 
which may further the transparency and openness. However, some 
researchers may find “programming” in R intimidating. 

Therefore, this tutorial provides investigators with not only the 
code, but hopefully an understanding of how to code linear mixed-
effect models in R, how to appropriately prepare and visualize the 
data, and how to interpret the outcomes. The authors will attempt 
to annotate their code throughout, and the reader is encouraged 
to use the code we provide as a template for their future analyses. 
Please note, experienced R users may use a different syntax structure 
and/or style, and this is acceptable, as the end-product will remain 
unaffected. Other linear mixed-effect modeling packages may require 
different instructions; therefore the reader is directed to Bates, et al. 
[14] and Pinheiro, et al. [15] for additional details as necessary. 

Getting Started in R
R may be used in conjunction with integrated development 

environments (IDE). An IDE is a software designed to facilitate 
program design to programmers (i.e., the reader). A popular and free 
IDE for R is RStudio, which has many additional tools that may help 
the reader overcome “coding” issues commonly feared. However, an 

IDE is not a replacement for R, nor does it make R a “point-and-click” 
software. Please note, an IDE is not required to use the code presented 
here, but the authors may highlight select areas that the reader may 
find helpful within RStudio. Included as an appendix file is the syntax 
used in this manuscript which can be opened in either R or RStudio. 

Required Packages
The primary reason why R is so powerful is because the availability 

of a variety of built-in packages. A package is a bundle of pre-written 
code and functions which allow users to easily implement certain 
tools, tests, or graphics. For the purposes of our tutorial, our code 
requires the following packages: tidyverse, summarytools, plotrix, 
nlme, effects, & emmeans. These packages can be installed using the 
install.packages() function. In the below example, the authors install 
multiple packages at once with the use of the concatenate function, 
c(), within the install.packages() function where each package is 
within quotations (“ ”) and separated by a comma (,). Please note 
spelling and case is critical in R:

# text with the pound sign preceding it will not be read by R
# this feature is also great for notes at any time
## two pound signs usually precede R outputs 
install.packages(c(«tidyverse»,»summarytools»,»plotrix»,
 «nlme», «effects», «emmeans»),
 dependencies = TRUE,
 repos = «http://cran.us.r-project.org»)

The reader will only need to install packages the first time they use 
R, or when they wish to use a new package. The authors will refrain 
from going into depth regarding all possible tools of each package. 
Rather, we will point the reader to what tools are from each package. 
The reader is encouraged to explore all aspects of each package 
on their own using “?packagename” function (i.e., “help” feature). 
Depending on which analyses the reader elects to run in the future, 
the reader may not require all these packages and/or may require 
others. After the required packages have been installed, they can be 
loaded by using library() for each package. The reader will need to do 
this task prior to using the functions within each package, but they 
will only require loading each package once within a given R session. 

library(tidyverse) #multitude of tools for data wrangling
library(summarytools) #at a glance summary statistic
library(plotrix) #provides functions for custom figures
library(nlme) #package for linear mixed modeling
library(effects) #package to estimate effects of models
library(emmeans) #packages to estimate marginal means

Example Data Set
An example data set is included as an appendix file. The provided 

data is meant to serve as a useful example based on a common 
research design so that the reader can better utilize this tutorial. The 
example research design is a repeated measures study looking at the 
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effects of a resistance training intervention on muscle volume. The 
dataset (n = 40) includes a group (2 groups; intervention [n = 20], 
control [n = 20]) and time effects (5 time points; pre-, 3 mid-, and a 
post-testing). Time points are labeled as m0 (pre-testing), m1 (mid-
test 1), m2 (mid-test 2), m3 (mid-test 3) and m4 (post-testing). The 
dependent variable is Muscle Volume and labeled as MuscleVol.

Loading in the Data
Loading data into R can be done in multiple ways. Our 

recommended way uses the read_excel() function from the readxl 
package to read in .csv files. Other file types (e.g., .txt, SAS, SPSS, Stata) 
are also compatible, but may require a different function. In RStudio, 
the reader is encouraged to use the “Import Dataset” tool found in 
the environment pane to help automate the process if desired. In the 
present example, we have loaded our example data into a data frame 
called “example.data”, which is where R will call data from. Please 
note, we have named our example data as “example.data” for clarity, 
but the reader may rename this as they please. Also, the file path 
is specific to the lead author and will differ from that of the reader. 
Please carefully change this file path and use the specific file path for 
the desired file.

example.data <- readxl::read_excel(«C:/Users/jamota/2023 
Mixed Effect Modeling Project/LME Example Data.xls”)

This syntax creates a data frame (example.data) from the “LME 
Example Data” file, found within the given path on the C: drive (the 
file location for the reader may vary). The data frame (example.data) 
will be used moving forward. If desired, the reader may wish to “see” 
the data. This can be done using view() to see all of the data. When 
you only wish to see some of the data, other functions may be more 
convenient; head() provides you with the first ten rows of data and 
tail() provides you with the final ten rows of data, colnames() gives 
you an output of all column names, which correspond to the available 
variables.

head(example.data)
## # A tibble: 6 x 7
## id group m0 m1 m2 m3 m4
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 190. 200. 206. 260. 236.
## 2 2 1 195. 271. 225. 271. 272.
## 3 6 1 280. 338. 371. 449. 486.

## 4 8 1 244. 299. 279. 287. 350.
## 5 10 1 251. 262. 257. 255. 264.
## 6 11 1 143. 154. 170. 164. 209.

At present the dataframe, example.data, is in wide format (i.e., 
each row of data contains all data for a given subject). However, many 
linear mixed-effects modeling approaches require data to be in long 
format (i.e., each row of the dataframe contains individual instances 
of data). R makes this process simple by using the reshape function: 

example.data.long = reshape(data = as.data.frame(example.
data),	
idvar = «id», 		   				     
 timevar = «measure»,	  				  
 v.names = «MuscleVol»,	  				  
 varying = list(c(«m0», «m1» ,»m2» ,»m3», «m4»)),	
 times = c(0, 1, 2, 3, 4),					   
 direction = «long»)					   

This step created a new data frame, example.data.long, which 
has data in long format. This was done using the reshape() function, 
apart of the tidyverse package. This formatting process also creates 
two new variables named “measure” and “MuscleVol” within the 
data frame example.data.long. The measure variable represents the 
categorical “time” variable corresponding to the aforementioned 
repeated measures assessments (i.e., pre-, 3 mid-, and a post-testing 
time-points). The MuscleVOL represents the muscle volume measure 
of interest. These two “new” variables can be named at the discretion 
of the reader. The data in both data frames are the same, just in 
different formats (i.e., wide vs. long). This can be confirmed again 
using the head() function:

head(example.data.long[,c(1,2,3,4)], n=10)
## id group measure MuscleVol
## 1 1 1 0 190.2513
## 2 1 1 1 199.7280
## 3 1 1 2 206.2445
## 4 1 1 3 259.5733
## 5 1 1 4 235.5904
## 6 2 1 0 195.3600
## 7 2 1 1 271.2829
## 8 2 1 2 225.2292
## 9 2 1 3 270.7539
## 10 2 1 4 272.2077
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Figure 1: Individual plots of 5 random samples across time in the example dataset.
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Data Visualization
Prior to model genesis, proper visualization of the dataset is 

encouraged. We will use the base R plotting function plot() and the 
function ggplot() from the ggplot2 package. Both are valuable tools 
for exploring and creating publication-ready graphics with endless 
customization options. Sometimes it may be difficult to see individuals’ 
growth trajectories clearly when there are many observations in the 
data. In these scenarios it is wise to take a few random samples of a 
smaller size. Several individual’s data connected by lines across time 
is called a «spaghetti plot» because it often resembles that famed 
pasta. To get the program to create this type of graph correctly, it is 
critical that all NAs be removed from the dataset before graphing.

set.seed(32039) #used to standardize random variables
#The following chunk of code creates a “for” loop to pull 5 random 
samples
for(g in 1:5){
par(ask = TRUE)
childid = sample(n.dat$id, 1, replace = F)
lab.example.data = c(«pre»,»m1»,»m2», «m3»,»m4»)
### make a spaghetti plot using the base plot() function
plot(n.dat$measure, n.dat$MuscleVol, type = «n»,
xlab = «Time», ylab = «Muscle Volume»,
bty = «l», cex.lab = 1, pch = 21, xaxt = «n», yaxt = «n»)
for (I in unique(childid)){
points(n.dat$measure[n.dat$id==i], n.dat$MuscleVol[n.dat$id==i], 
pch = 19)
lines(n.dat$measure[n.dat$id==i], n.dat$MuscleVol[n.dat$id==i], 
type = «l», lty = 1, lwd = 1.5)
 }
axis(1, at = c(0, 1, 2, 3, 4), labels = lab.example.data, tick = TRUE)
axis(2, at = seq(0, 40, 10), labels = TRUE, tick = TRUE)
axis.break(axis = 2, breakpos = 115, bgcol = «white», breakcol = 
“black»,
style = «zigzag», brw = 0.02)
}

The above script provides the reader with 5 random samples 
responses across time. This screening procedure may be helpful for 
some investigators wishing to capture random “snapshots” of their 
data (Figure 1). Though other investigators may be more interested 
in grouped mean responses below.

### make a spaghetti plot for group1
set.seed(32039) #used to standardize random variables
childid = sample(n.dat$id, 30, replace = F)

lab.example.data = c(«pre»,»m1»,»m2», «m3»,»m4»)
plot(n.dat$measure, n.dat$MuscleVol, type = «n», 
xlab = «Time Period», ylab = «Muscle Volume», 
bty = «l», cex.lab = 1, pch = 21, xaxt = «n», yaxt = «n»)
for (j in unique(childid)){
points(n.dat$measure[n.dat$id==j &n.dat$group==1], #note two = 
signs
n.dat$MuscleVOL[n.dat$id==j &n.dat$group==1], pch = 19)
lines(n.dat$measure[n.dat$id==j &n.dat$group==1],
n.dat$MuscleVOL[n.dat$id==j &n.dat$group==1], type = «l», lty = 
1,lwd = 1.5)
 }
axis(1, at = c(0,1,2,3,4), labels = lab.example.data, tick = TRUE)
axis(2, at = seq(0,40,10), labels = TRUE, tick = TRUE)
axis.break(axis = 2, breakpos = 115, bgcol = «white», breakcol = 
«black»,
style = «zigzag», brw = 0.02)
### make a spaghetti plot for group2
set.seed(32039) #used to standardize random variables
childid=sample(n.dat$id, 30, replace = F)
lab.example.data = c(«pre»,»m1»,»m2», «m3»,»m4»)
plot(n.dat$measure, n.dat$MuscleVol, type = «n», xlab = «Time 
Period», 
ylab = «Muscle Volume», bty = «l», cex.lab = 1, pch = 21, 
xaxt = «n», yaxt = «n»)
for (h in unique(childid)){
points(n.dat$measure[n.dat$id==h &n.dat$group==2], #note two 
= signs
n.dat$MuscleVOL[n.dat$id==h &n.dat$group==2 ], pch = 2)
lines(n.dat$measure[n.dat$id==h &n.dat$group==2],
n.dat$MuscleVOL[n.dat$id==h &n.dat$group==2],
type = «l», lty = 3, lwd = 1.5)
 }
axis(1, at = c(0,1,2,3,4), labels = lab.example.data, tick = TRUE)
axis(2, at = seq(0,40,10), labels = TRUE, tick = TRUE)
axis.break(axis = 2, breakpos = 115, bgcol = «white», breakcol = 

«black»,
style = «zigzag», brw = 0.02)

In the above code chunks, the inclusion of the “n.dat$group==1” or 
“n.dat$group==2” arguments instruct the program to select groups as 
desired (Figure 2). The line type is adjusted with the “lty = ” argument 
and the points can be modified using the “pch= ” argument. This can 
be a quick resource for investigators wishing to examine, at a glance, 
the grouped mean responses across time. Many more options exist for 
plotting options but are outside the scope of this tutorial.

https://dx.doi.org/10.26717/BJSTR.2023.49.007794
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Figure 2: Spaghetti plot across time for those in group 1 (A.) and group 2 (B.).

Setting up the Linear Mixed-Effect Model
To set up the linear mixed-effect model, we suggest using the 

lme() function from the nlme package. Similar operations can also 
be done using other packages such as lme4, but please note the 
syntax will vary. To begin, we will instruct R to create a linear mixed-
effect model into an object named “vol.mod.1”. The choice of name 
was intentionally designed to be informative of the variable (vol = 
volume), procedure (i.e., mod = model), and iteration of syntax (1 = 
first iteration) though this may be named at the behest of the reader. 

vol.mod.1 <- lme(fixed = MuscleVol ~ measure + group + 
measure*group,

 data = example.data.long,
 na.action = na.omit,
 method = «REML»,
 random = ~ 1 + measure|id)

The reader will note the inclusion of fixed effects (i.e., fixed = 
…), specification of which data frame to use (i.e., data = …), variance 
estimation (i.e., method = “REML”), followed by the random effect (i.e., 
random = …). The random effect notation is separated by a pipe (|). 
The value on the left of the pipe is the effect to vary (i.e., intercept, 
slope), and the right side of the bar names the variable for which the 
random factor will vary (e.g., subject). The listed term (mesure|id) 
allows the intercepts (i.e., 1) and slopes to vary by subject (i.e., id) 
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across each measurement (i.e., measure). This model is stored in the 
object “vol.mod.1”. 

Linear Mixed-Effect Model Output 
In the present example, the results from the linear mixed-effect 

model are stored in the object “vol.mod.1”. The authors recommend 
using the summary() function to view the results. The summary() 
output provides the reader with indications of model fit, random 
effects, fixed effects, correlation structure, within-group residuals, 
and the number of observations and groups. We can examine some 
aspects of the summary(vol.mod.1) output further.

 Summary(vol.mod.1)

## Linear mixed-effects model fit by REML
## Data: example.data.long 
## AIC BIC logLik
## 2023.233 2049.458 -1003.617
## 
## Random effects:
## Formula: ~1 + measure | id
## Structure: General positive-definite, Log-Cholesky 
parametrization
## StdDev Corr 
## (Intercept) 47.11404 (Intr)
## measure 10.67873 0.142 
## Residual 26.38440 
## 
## Fixed effects: MuscleVol ~ measure + group + measure * group 
## Value Std.Error DF t-value p-value
## (Intercept) 179.54271 25.677883 158 6.992115 0.0000
## measure 48.54203 6.775856 158 7.163970 0.0000
## group 29.74666 16.240119 38 1.831677 0.0748
## measure:group -23.77184 4.285428 158 -5.547133 0.0000
## Correlation: 
## (Intr) measure group 
## measure -0.097 
## group -0.949 0.092 
## measure:group 0.092 -0.949 -0.097
## 
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max 
## -2.44098589 -0.48227564 -0.06876291 0.55239797 2.49035652 
## 
## Number of Observations: 200
## Number of Groups: 40

Assessing Model Fit
## Linear mixed-effects model fit by REML
## Data: example.data.long 
## AIC BIC logLik
## 2023.233 2049.458 -1003.617

In the analytical procedure of estimating a linear mixed-effect 
model, the first approach is to investigate one of the various model 
fit statistics (i.e., AIC, BIC, LogLik). In practice, Akaike’s Information 
Criterion (AIC) is often used to understand the goodness of fit of a 
linear mixed-effect model [16]. However, when AIC is calculated from 
a single model it cannot be interpreted as a model fit measure. It is 
a relative fit measure, meaning multiple models could be compared 
based on multiple AICs, and the lowest AIC of any model indicates 
the best fit of that model. Said another way, the model with the least 
AIC value is usually considered as the optimized model. Hence, AIC is 
offering us a way to identify the optimized model if multiple predictor 
variables are available. To obtain better (lower) AIC, we should 
remember that parsimonious models are more advantageous (i.e., 
explaining outcomes with the least number of variables will provide 
us with lower AIC). For additional details on model fit, the reader is 
guided to Liu, et al. [17].

Random Effect Output and Interpretations
## Random effects:
## Formula: ~1 + measure | id
## Structure: General positive-definite, Log-Cholesky 
parametrization
## StdDev Corr 
## (Intercept) 47.11404 (Intr)
## measure 10.67873 0.142 
## Residual 26.38440 

Before examining the random effect, we remind the reader that 
the model is attempting to explain the variation of muscle volume 
(MuscleVol) by the intervention. MuscleVol was measured in five 
measurement periods, with individuals in both treatment and control 
groups. Despite the study design measuring intervention effects by 
grouping study participants into separate groups, it is valuable to 
understand the individual-level effects across all participants in the 
model, and to appreciate these individual effects are rather random. 
Hence, the random effects measures can provide insights about [16] 
the variance of intercepts across all individual subjects, and [4] the 
variability in the slope across all individual subjects [18].

In our example, we allowed individual intercepts and slopes to 
vary from individual to individual across each measurement period. 
The standard deviation associated with the intercept is 47.11, and 
it suggests that the variation in the individual (subject) intercepts 
is fitted with a standard deviation of 47.11 from the mean intercept 
179.54 (the mean intercept is discussed in the fixed effect model 
section below). Secondly, we see there is another standard deviation 
listed just beside the “Measure” variable. The standard deviation of 
Measure provides us with the variation of the slope at individual 
levels across all measurement periods. In our example, the standard 
deviation associated with Measure is 10.68. This means variation 
in the slopes of all individuals within the dataset is estimated with 
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a standard deviation of 10.68 from the mean point 48.54 (the mean 
point is mentioned in the fixed effect model). For further reading, the 
reader is directed to the example provided by Brown [19]. 

Fixed Effect Output and Interpretations

## Fixed effects: MuscleVol ~ measure + group + measure * group 
## Value Std.Error DF t-value p-value
## (Intercept) 179.54271 25.677883 158 6.992115 0.0000
## measure 48.54203 6.775856 158 7.163970 0.0000
## group 29.74666 16.240119 38 1.831677 0.0748
## measure:group -23.77184 4.285428 158 -5.547133 0.0000

Fixed effect estimates obtained during the linear mixed-effect 
model estimation process are generally understood as we interpret 
traditional regression models, but the reader should be cautious when 
interpreting the average effects of each covariate in the presence 
of their interactions [19]. In the present example, MuscleVol was 
explained by measurement periods, groups, and measurement period 
by group interaction. Hence, the authors will attempt to interpret the 
effect of each factor and the significance of each explanatory variable 
considered in the model. The regression coefficients can be examined 
to understand the effects of each variable. The intercept of the model 
is often interpreted as the average level of the dependent variable 
when all other predictor variables (i.e., regression coefficients) 
assume value of 0s. The respective p-values of each regression 
coefficient are derived from a t-test and may be used to understand 
whether the factor variable has any significant effect on the dependent 
variables. The null hypothesis being tested here is that the regression 
coefficients (e.g., measure, group) = 0. Lower p-values (<0.05) indicate 
failure to accept the null hypothesis. In other words, when the null 
hypothesis is rejected there is not evidence to suggest the regression 
coefficient is meaningfully different than 0. For additional discussion 
on p-values. please see Thiese, et al. [20]. 

In our model, all factors (e.g., measure, group, and the interaction 
between measure and group) have a significant effect on the 
dependent variable, MuscleVol. The intercept value is 179.54, which 
indicates that on an average an individual in the study has MuscleVol 
of 179.54 cm3, when there is no effect from measure, group, or their 
interaction. The coefficient value of the variable “group” is 29.75, 
which means individuals in group 1 had greater MuscleVol (29.75 
cm3) compared to individuals in group 2 when the measurement 
period was zero. 

Interpretation of the interaction effects should be performed 
with caution, as it is heavily dependent on the coding structure [19]. 
For instance, the reader may be interested in the interaction term to 
examine the effect of one variable on the value of another variable. 
An estimated positive effect in interaction term could be interpreted 
as an increase in one variable will proportionally increase the other 
variable towards the outcome variable. In our example, we obtained 

-23.77 as the coefficient of the interaction term. This indicates that if 
we increase one variable of the interaction by 1 unit, the effect of the 
other variable will decrease, which creates a joint negative marginal 
effect of 23.77 cm3 to the muscle volume. 

Correlation Interpretations

## Correlation: 
## (Intr) measure group 
## measure -0.097 
## group -0.949 0.092 
## measure:group 0.092 -0.949 -0.097##

The estimated correlation matrix from the fixed-effect model 
may not be interpreted as the correlation that is traditionally thought 
of, rather it provides approximate correlations between estimated 
regression coefficients. In this instance, a positive correlation of 
the effect of a variable with intercept (“Intr”) indicates that a larger 
value of the intercept will influence a larger change in the slope 
of that variable, and a higher value correlation signifies a higher 
impact. A reverse interpretation could be done for negative values of 
these correlation coefficients. For example, the correlation between 
measure and intercept is -0.097, which indicates that with higher 
initial MuscleVol of an individual will lead to a slight decrease in the 
rate of gaining muscle volume. The other correlation coefficients 
could be interpreted in the similar manner, but the reader should be 
careful about interpreting these correlations of effects. 

Post Hoc follow-Up

Given the interaction effect present, the reader may wish to 
explore this effect in more detail. A useful first step may be to closely 
examine the 95% confidence intervals (CI), which may be done using 
the intervals() function:

## Approximate 95% confidence intervals
## 
## Fixed effects:
## lower est. upper
## (Intercept) 128.826525 179.54271 230.25889
## measure 35.159091 48.54203 61.92497
## group -3.129746 29.74666 62.62306
## measure:group -32.235953 -23.77184 -15.30772
## attr(,»label»)
## [1] «Fixed effects:»

This function provides the reader with the estimated marginal 
effect (i.e., est.) and 95% CI (i.e., lower, upper) for each main effect 
(measure, group). The authors recommend the use of 95% CI which 
do not include 0 over relying on p-value thresholds, as this may make 
for easier interpretation of model parameters. In the above example, 
the interaction effect (measure:group) has an estimated marginal 
effect of -23.77 cm3 and has a 95% CI of -32.24 – -15.31 cm3. This 
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parameter suggests that there was a significant interaction effect 
present based on measurement number (i.e., testing day) and group 
inclusion (i.e., intervention vs. control). In order to get a clear idea of 
which direction these data may lead the reader, we encourage the use 
of the effect() function:

effect(«measure*group», vol.mod.1)
## 
## measure*group effect
## group
## measure 1	  2
## 0 209.2894 239.0360
## 1 234.0596 240.0344
## 2 258.8297 241.0327
## 3 283.5999 242.0311
## 4 308.3701 243.0294

This function selects the interaction effect (measure*group) 
within our model of interest (vol.mod.1) and calculates the specific 
effects modeled. This output allows us to clearly see an effect for 
group 1 (i.e., intervention) measurements. To explain the interaction 
effect of measure across groups, we re-organized the marginalized 
effects obtained from the effect(measure* group) command (Table 
1). In Table 1, all the marginal effects of different combinations of 
groups and measures are presented. In the present example, group 
2 is observing a negative impact of time compared to group 1, and 
the rate of this effect is -23.77 cm3 (i.e., interaction effect). The reader 
may also notice that at the initial level average muscle volume in the 
control group (239.04 cm3) was higher than the intervention group 
(209.29 cm3), but across time the muscle volume in those in the 
intervention group increased. The negative sign in the interaction 
effects arose due to coding only, which may encourage the reader to 
always display their data in tabular or graphical format. The authors 
believe this approach may increase clear outcomes associated with 
study future studies. 

Table 1: Marginal effect of group across measurement time points.

Timepoint
Group Difference in group wise muscle volume in 

different measurement periods
Rate of change in the difference (i.e., 

interaction effect)1 2

0 209.29 239.04 -29.75

1 234.06 240.03 -5.97 -23.77

2 258.83 241.03 17.8 -23.77

3 283.59 242.03 41.56 -23.77

4 308.37 243.03 65.34 -23.77

Note: Group 1 = intervention; Group 2 = control.

Common Pitfalls in Linear Mixed Modeling in R
There are certain aspects of linear mixed-effect modeling for 

longitudinal data that the reader may consider before modeling on 
their own. This tutorial is not probing into major theoretical modeling 
issues, rather attempting to provide a general guideline pointing out 
a few ideas. 

A.	 Selecting variables for random effects requires a clear 
definition of the variable and its probable random effects. Due to 
mathematical limits in variability, it is sometimes disadvantageous 
to define a categorical variable with only two levels as the source 
of randomness (e.g., sex). Please see Brauer, et al. [21] for a 
detailed discussion. 

B.	 The reader is encouraged to remain diligent when writing 
code. R is sensitive to case structure and placement of variables 
within functions. It is common for R users of all experiences to 
have errors in their code which may result in errors, especially 
when specifying differing factors or variables. The RStudio IDE 

may help some readers with keeping their code written without 
mistakes. 

C.	 Some of the mixed-effect model estimates may not have 
the same meaning as traditional multiple regression models. 
The reader should express caution when interpreting model 
estimates, including interaction effect estimates, and remember 
these interpretations are made in the presence of random effects 
[19].

How to Report the Results from a Mixed-Effect 
Model? An Example

Arguably, the most critical portion of statistical modeling is 
the proper interpretation of the outcomes. Although the authors 
expanded upon each segment of the model above, we believe a sample 
report may assist help our readers in their future works. Therefore, 
when writing the results sections, we encourage the reader to remain 
parsimonious and specific.
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Sample Results

The outcomes of the linear mixed-effect model suggest that 
there is a significant measure by group interaction effect present, 
with an estimated marginal effect of -23.77 cm3 (95% CI = -32.24 
– -15.31 cm3). The model also revealed significant main effects for 
measurement period (estimated marginal mean = 48.54 cm3; 95% CI 
= 35.16 – 61.92 cm3), but not group (estimated marginal mean = 29.75 
cm3; 95% CI = -3.13 – 62.62 cm3). When looking at the measure by 
group interaction effect more closely, the estimated marginal effects 
suggest an increase in muscle volume of 47.3% in the intervention 
group and a 1.67% change in muscle volume for those in the control 
group. This sample model report is based on only basic estimates that 
the reader may think of incorporating in his or her research. However, 
there are many other estimates mentioned in the model output which 
may also be reported based on the necessity and the pattern of the 
research questions. 

Conclusion and Final Notes
Over the next two decades, linear mixed-effect models may gain 

momentum in various fields [22]. The modeling approach is capable 
of analyzing complex data structures incorporating random variance 
components [9]. Conveniently, many software are currently available 
to overcome the complexity of this modeling approach [23]. More 
importantly, this modeling approach is well equipped to manage 
longitudinal data common within kinesiology research and sport 
science settings, especially for data collected from experimental 
designs with random effects spanning over multiple time periods. 
Furthermore, mixed modeling approach may overcome the issues 
of missing data and unbalanced designs. Hence, this tutorial aims to 
aid our readers to design a longitudinal experiment and help them to 
appropriately estimate effects for the data. Based on the advantages 
discussed above, the authors urge research groups to consider this 
modeling approach in their future works. 

Acknowledgment
This work is dedicated to the life of Ramon Mota, who’s birthday 

is coded as the set.seed needed to standardize random variables 
when the reader generates figures. This world lost him on January 3rd, 
2021. He was an extraordinary man who shaped the life of one of the 
authors of this paper. Love you, Dad. 

Conflict of Interest
The authors declare no conflicts of interest.

References
1.	 Bates D, Machler M, Bolker B, Walker S (2014) Fitting linear mixed-effects 

models using lme4. arXiv preprint arXiv: 1406: 5823.

2.	 West BT, Welch KB, Galecki AT (2006) Linear mixed models: a practical 

guide using statistical software. Chapman and Hall/CRC.

3.	 McCulloch CE (2005) Repeated Measures Anova, RIP? Chance 18(3): 29-
33.

4.	 Baayen R (2008) Analyzing Linguistic Data: A Practical Introduction to 
Statistics Using R. Cambridge University Press.

5.	 Matuschek H, Kliegl R, Vasishth S, Baayen H, Bates D (2017) Balancing 
Type I error and power in linear mixed models. Journal of memory and 
language 94: 305-315.

6.	 Pinheiro J, Bates D (2006) Mixed-effects models in S and S-PLUS. Springer 
science & business media.

7.	 Beck TW (2013) The importance of a priori sample size estimation in 
strength and conditioning research. J Strength Cond Res 27(8): 2323-
2337.

8.	 Casals M, Girabent Farres M, Carrasco JL (2014) Methodological quality 
and reporting of generalized linear mixed models in clinical medicine 
(2000–2012): a systematic review. PloS one 9(11): e112653.

9.	 Nagle C (2018) An Introduction to Fitting and Evaluating Mixed-effects 
Models in R.

10.	 Singmann H, Kellen D (2019) An introduction to mixed models for exper-
imental psychology, in: New methods in cognitive psychology. Routledge 
p. 4-31.

11.	 Ibrahim JG, Chu H, Chen MH (2012) Missing data in clinical studies: issues 
and methods. Journal of clinical oncology 30(26): 3297-3303.

12.	 Luke SG (2017) Evaluating significance in linear mixed-effects models in 
R. Behavior research methods 49(4): 1494-1502.

13.	 Winter B (2013) A very basic tutorial for performing linear mixed effects 
analyses. arXiv preprint arXiv:1308: 5499.

14.	 Bates D, Sarkar D, Bates MD, Matrix L (2007) The lme4 package. R package 
version 2: 74.

15.	 Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, et al. (2017) Pack-
age ‘nlme’. Linear and nonlinear mixed effects models, version 3.

16.	 Akaike H (1998) Information theory and an extension of the maximum 
likelihood principle. Selected papers of hirotugu akaike Springer pp. 199-
213.

17.	 Liu S, Rovine MJ, Molenaar P (2012) Selecting a linear mixed model for 
longitudinal data: repeated measures analysis of variance, covariance pat-
tern model, and growth curve approaches. Psychological methods 17(1): 
15-30.

18.	 Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2010) A basic intro-
duction to fixed‐effect and random‐effects models for meta‐analysis. Re-
search synthesis methods 1(2): 97-111.

19.	 Brown VA (2021) An Introduction to Linear Mixed-Effects Modeling in 
R. Advances in Methods and Practices in Psychological Science 4(1): 
2515245920960351.

20.	 Thiese MS, Ronna B, Ott U (2016) P value interpretations and consider-
ations. Journal of thoracic disease 8(9): E928-E931.

21.	 Brauer M, Curtin JJ (2018) Linear mixed-effects models and the analysis 
of nonindependent data: A unified framework to analyze categorical and 
continuous independent variables that vary within-subjects and/or with-
in-items. Psychological Methods 23(3): 389-411.

https://dx.doi.org/10.26717/BJSTR.2023.49.007794
https://arxiv.org/abs/1406.5823
https://arxiv.org/abs/1406.5823
https://www.tandfonline.com/doi/abs/10.1080/09332480.2005.10722732
https://www.tandfonline.com/doi/abs/10.1080/09332480.2005.10722732
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
https://books.google.co.in/books/about/Mixed_Effects_Models_in_S_and_S_PLUS.html?id=ZRnoBwAAQBAJ&redir_esc=y
https://books.google.co.in/books/about/Mixed_Effects_Models_in_S_and_S_PLUS.html?id=ZRnoBwAAQBAJ&redir_esc=y
https://pubmed.ncbi.nlm.nih.gov/23880657/
https://pubmed.ncbi.nlm.nih.gov/23880657/
https://pubmed.ncbi.nlm.nih.gov/23880657/
https://pubmed.ncbi.nlm.nih.gov/25405342/
https://pubmed.ncbi.nlm.nih.gov/25405342/
https://pubmed.ncbi.nlm.nih.gov/25405342/
https://dr.lib.iastate.edu/entities/publication/42c47f8c-fda7-4eff-82f3-887d133146d8
https://dr.lib.iastate.edu/entities/publication/42c47f8c-fda7-4eff-82f3-887d133146d8
http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf
http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf
http://singmann.org/download/publications/singmann_kellen-introduction-mixed-models.pdf
https://pubmed.ncbi.nlm.nih.gov/22649133/
https://pubmed.ncbi.nlm.nih.gov/22649133/
https://pubmed.ncbi.nlm.nih.gov/27620283/
https://pubmed.ncbi.nlm.nih.gov/27620283/
https://arxiv.org/abs/1308.5499
https://arxiv.org/abs/1308.5499
https://www.researchgate.net/publication/236628843_The_lme4_Package
https://www.researchgate.net/publication/236628843_The_lme4_Package
https://mran.microsoft.com/snapshot/2017-02-20/web/packages/nlme/index.html
https://mran.microsoft.com/snapshot/2017-02-20/web/packages/nlme/index.html
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
https://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
https://pubmed.ncbi.nlm.nih.gov/22251268/
https://pubmed.ncbi.nlm.nih.gov/22251268/
https://pubmed.ncbi.nlm.nih.gov/22251268/
https://pubmed.ncbi.nlm.nih.gov/22251268/
https://pubmed.ncbi.nlm.nih.gov/26061376/
https://pubmed.ncbi.nlm.nih.gov/26061376/
https://pubmed.ncbi.nlm.nih.gov/26061376/
https://www.researchgate.net/publication/350438498_An_Introduction_to_Linear_Mixed-Effects_Modeling_in_R
https://www.researchgate.net/publication/350438498_An_Introduction_to_Linear_Mixed-Effects_Modeling_in_R
https://www.researchgate.net/publication/350438498_An_Introduction_to_Linear_Mixed-Effects_Modeling_in_R
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059270/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059270/
https://pubmed.ncbi.nlm.nih.gov/29172609/
https://pubmed.ncbi.nlm.nih.gov/29172609/
https://pubmed.ncbi.nlm.nih.gov/29172609/
https://pubmed.ncbi.nlm.nih.gov/29172609/


Copyright@ :  Jacob A Mota  | Biomed J Sci & Tech Res | BJSTR. MS.ID.007794.

Volume 49- Issue 3 DOI: 10.26717/BJSTR.2023.49.007794

40623

22.	 Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: 
tests in linear mixed effects models. Journal of statistical software 82(13): 
1-26.

23.	 Tanaka E, Hui FK (2019) Symbolic Formulae for Linear Mixed Models. Pre-
sented at Research School on Statistics and Data Science p. 3-21.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2023.49.007794

Jacob A Mota.  Biomed J Sci & Tech Res

https://dx.doi.org/10.26717/BJSTR.2023.49.007794
https://www.jstatsoft.org/article/view/v082i13
https://www.jstatsoft.org/article/view/v082i13
https://www.jstatsoft.org/article/view/v082i13
https://link.springer.com/chapter/10.1007/978-981-15-1960-4_1
https://link.springer.com/chapter/10.1007/978-981-15-1960-4_1
https://dx.doi.org/10.26717/BJSTR.2023.49.007794

