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ABSTRACT

In this manuscript, a new approach termed as ”Continous Galerkin-Petrov” is imple- mented to create 
a mathematical model after the HIV infection that represents the be- havior of uninfected CD4+ T-cells, 
infected CD4+ T-cells, and free HIV pathogens. Over- all dynamics of healthy, infected CD4+ T-cells and free 
HIV pathogens are governed by the stream function for CD4+ T-cells replenishment from the thymocytes. 
We further looked at the impact of several adjustable parameterization on the stream of new CD4+ T-cells 
in extensive detail. Secondly, the framework is determined using the Runge Kut- ta technique of fourth 
order (RK-4 method). Finally, the suggested scheme’s reliability and validity are confirmed by analyzing the 
graphical and numerical results to the re- sults of RK4-method. The numerical and statistical results were 

compared to the RK4 approach, which indicated that the ( )2cGP −  method works quite well. In contrast to 
pre- vious conventional schemes, the consistency and efficiency of the suggested system are mentioned in 
this research.
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Introduction
The human immunodeficiency virus (HIV) targets the immune 

system. The immune system is the human body’s natural defence 
mechanism against illnesses. This system has number of biological 
structures in an organism for defence processes against disease. The 
main part of the human body defence system in blood cells is known 
as T-helper cells which destroyed by these viruses. Inside these cells, 
the virus makes copies by itself. The immune system of a person be 
totally destroyed due to untreated HIV virus. The HIV virus gradu-
ally breaks down person’s immune system by making more copies 

of itself, as it spiflicate more CD4+ T-cells. This means that without 
treatment someone that got HIV, find more troubles to fight off dis-
eases and infections. If HIV patient is not given medical care, it may 
take 7-10 years [1] for the immune system to be so bad- ly spoiled 
that it can no more support itself in any respect. Breast milk, blood, 
semen, vaginal and anal fluids are the sources of presence of HIV. 
The transmission of HIV is not possible by urine, sweat or saliva. The 
set of symptoms caused by the HIV virus is called acquired immune 
deficiency syndrome (AIDS). When some people develop spe- cific 
symptoms and sicknesses, due to weakness of their immune system 

https://biomedres.us/
https://dx.doi.org/10.26717/BJSTR.2023.50.007901


Copyright@ :  Adil Khurshaid | Biomed J Sci & Tech Res | BJSTR. MS.ID.007901. 41292

Volume 50- Issue 1 DOI: 10.26717/BJSTR.2023.50.007901

for fighting against infection are declare to have AIDS. This is the final 
phase of HIV and will lead to death without treatment. Unfortunately, 
there is no proper cure for HIV in present. The people effected with 
HIV can live healthy and long lives by taking treatment aright. 

The human body’s innate immunity is a collaboration of several 
cells and tissues unitedly for supporting of the human body against at-
tacks by extraneous invaders. There are two types of white blood cells 
that help the regulation of the immune function. One is devel- oped 
in bone marrow and produce antibodies called B-cells. The other is 
developed in a small organ in human body known as thymus gland 
called T-cells, which have respon- sibilities for the variety of some 
immune reaction. HIV is propagate from chimpanzees to human in 
early 1900’s. In the midwest, earliest case of AIDS appears in 1968’s. 
In 1987’s, the first citizen of Pakistan diagnosed with AIDS in Lahor. In 
Sub-Saharan Africa about twelve million children were effected with 
AIDS up to end of 2003’s. Numerous analogues for the body’s immune 
system have already been developed in recent years, and substantial 
investigation has been undertaken in the domain of HIV infection of 
CD4+ T-cells to comprehend HIV dynamical behavior, transmission, 
disease concatena- tion, as well as the immune system’s relationship 
with HIV. The destruction of CD4+ T-cells, which are required for the 
control of the human immune system, is one of the greatest havocs 
caused by HIV. As a result, the decrease in the number of these cells 
is employed as a main indication to track HIV epidemic concatena-
tion and AIDS stages. Such cells generate at a steady pace from bone 
marrow and thymus precursors. Un- fortunately, there is currently no 
treatment for this contagious condition. 

Now a days, the mathematical modeling have been used for un-
derstanding the transmitting of in- fectious diseases. The practise and 
theory of disease prevention and management are increasingly influ-
enced by mathematical models for the transmission of infectious ill- 
nesses [1-8]. For uninfected T-cells and free virions, Ogunlaran, et al. 
[9] used a mathematical model with two control variables: the logistic 
growth function and the incidence term sequentially. The investiga-
tors looked at how effective medication interventions are at stopping 
new cells from becoming infected and prevent- ing the production of 
new free virus. They demonstrated the efficacy of the framework by 
reducing the accumulation of infected cells and free virus particles 
even while ex- panding the accumulation of healthy T-cells inside the 
internal organs with a minimal intake of combined drug therapies in 
order to alert the negative consequences associat-ed with excessive 
use of drug treatment. The powerful antiviral drugs are the hope of 
healthy life for the person effected by HIV virus. Coffin, et al. [10] ex-
amined long-term modification in virus load in an effected person 
dosed by the compounding of potent an- tiviral drugs lamivudine and 
zidovudine. Nowak, et al. [11] studied the function of body defence 
system for restricting virus and vary the drug immunity of virus load. 

Culshaw [12] incorporate a time delay into their mathematical model 
for reporting the time interval among viral infection of CD4+ T-cells 
and viruses fragment production from the patient’s psyche on a mo-
lecular level. 

For finding of suitable conditions about the criterions in the 
framework for the innate and adaptive immunity steady states’ dura- 
bility the Song [2] used the simple model with saturation response. 
Perelson [13] examined how dynamical modelling and parameter 
estimation methodologies have revealed significant aspects of HIV 
pathophysiology. The number of CD4+ T-cells in a typical person is es-
timated to be approximately 1000mm−3 [13]. The name of T-helper 
cells given to the CD4+ T-cells is because the major function of these 
T-cells is to transmit information towards other monocytes in order 
to regulate the body’s defensive mech- anism. As HIV infection pro-
gresses, the number of these cells decline. The CD4+ T- cells counts 
is 800 to 1200 mm−3 of those people which shows HIV negative [4]. 
When CD4+ T-cells calculate 200mm−3 or more below in a patient in-
fected by HIV, then that person is sort to having AIDS [13]. Kumar, 
et al. [14] examined a dynamical mathematical model of HIV for un-
derstanding the infection of T-helper cells in human body. Boer, et al. 
[15] discussed a model which consist four components for the inter-
acting of CD4+ T-cells and HIV virus. They developed estimations for 
changing at early time in which HIV virus particles binds to T-cells 
rapidly. Kirschner, et al. [16] introduced chemother- apy technique for 
an early treatment by using dynamic treatment. Bonhoeffer, et al. [11] 
discussed the incipient understanding of the dynamics of virus popu-
lation. They al- so discussed the function of the body defence system 
in limiting virus abundance and changing of viral drug immunity. 

Nowak, et al. [17] uses a simple mathematical tech- nique to ex-
plore the connection amongst antimicrobial immune responses, vi-
ral variety, and infectious strain. The potential of transmission of any 
disease in the human body is measured by a number known as the 
basic reproduction rate represented by R0. This reproduction num-
ber actually make a ratio of infection of healthy cells due to infected 
one. The mathematical models gives us very significant details about 
the HIV virus re- search. The linearity of the reproduction rate in all 
mathematical models demonstrates the efficiency of the participation 
between T-helper cells and HIV pathogens. Zhou, et al. [1] discussed 
the CD4+ T-cells infected by HIV virus by using crowley-martin func-
tion response. They discussed some properties of basic reproduction 
number. Zhou, et al. [7] discussed the differential equation model in-
cluding cure rates. By using the char- acteristics of fundamental re-
production number R0, they showed that if R0 < 1 is used, the HIV 
virus infection is cleared and the sickness is eradicated, the infection 
of HIV virus remain in human body if R0 > 1. They found that the usual 
disease steady state is globally asymptotically stable if R0 >1.
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HIV Infection Model
There are a number of complex problems arising in the real 

world. These problems can be modeled in the language of mathemat-
ics. These problems can be defined by nonlinear ordinary differential 
equations (ODE’s). The importance of model increases as it gives best 
results having many variables. The variation of infection rate by HIV 
shows that the body defence system of the patient is the main tar-
get of HIV. The patient with strong immune system can survive more 
effectively against HIV. In other way, the patient with weak immune 
system can not survive against HIV for long period. This section dis-
cusses Zhou’s, et al. [7] suggested model, which comprises of non-lin-
ear differential equations. In the model, the total population is divid-
ed into three compartments. These are uninfected T-cells, infected 
T-cells and HIV virus particals. Let T(t), V(t) and I(t) be the population 
of healthy T-cells, free viruses and infected T-cells at time t respective-
ly. The non-linear system of equations of the proposed model [7] are :

max

1dT Ts T T TV I
dt T

δ ρ
 

= −Φ + − − +∞ 
  ,

 

dI TV I I
dt

ρ= − ϒ −∞
, (1)

.dV mI nV
dt

= −

The continuous source term for the delivery of fresh T-cells is 
represented by the parameter ’s’. It is an indicator of how quickly the 
thymus as well as bone marrow gen- erates healthy T-cells [8]. The ϕ 
stands for the concentration of functional T-cells that die after being 
created by the body system. The letter ρTV represents the rate of dor- 
mant HIV infection in functional CD4+ T-cells. The infectious reaction 
rate is denoted by ρ. The δ stands for the maximum rate of intended 
cell proliferation, Tmax stands for the T concentration of people upon 
which cell escalation stops, γ stands for the death rate of infectious 
damage cells, m stands for the rate of infection cell reproduction, n 
stands for the rate of viral clearance, and α stands for the rate of cura-
tive treatment. (Table 1) lists the general system characteristics and 
indicators that were used in the creation of the framework. About the 
availability of fresh functional T-cells, Zhou, et al. [7] evaluated the HIV 
prototype with a constant variable stream function. HIV has the po-
tential to contami- nate T-cells as soon as they enter the human body, 
which causes a decline in the number of young, functional T-cells [15]. 
For the purpose of providing new unaffected T-cells from the thymus, 
Boer, et al. [15] adopted an HIV model with changing source terms. 
Kirschner [3] and Webb, et al. [18] assume about the source phrase 

0
0

5s1 = 0:5  + .
1 ( )

s
s V t+  The source term employed by Perelson, et al. [15] is 
0

2 
s 0s = ,
+V(t)θ  where θ  is constant. If V = 0, 2 s  will stay the same and 

would be cut in half if the viral load V(t)  increased to the point θ . 
Perelson, et al. [4] anticipated 3 0s  = s  exp(- V(t))θ  as the source of the 

word. The HIV model with source termsimilar to that employed in 
the Perelson, et al. [15] model with 1θ =  is also taken into consid-
eration by (Kirschner, et al. [16]), Hermandes [19], Butler, et al. [5]. 
The primary goals of the current study are to investigate Zhou’s, et 
al. [7] model using all of the parameterization for the production of 
new cells indicated above. The dynamical behaviors of uninfected 
T-cells, free HIV virus particles, and infected T-cells will be explored 
in relation to the impact of fluctuation in the value of various clinical 
parameters. Arrangements can be obtained by employing the consis-
tent Galerkin-Petrov technique. Runge Kutta technique of order four 
(RK-4) will also be used to obtain numrical solutions of the proposed 
model. A computer programme created in MATLAB will be used to 
calculate all the findings. To better comprehend the implications of 
multiple source terms, graphical outcomes will be shown.

The Steady States [6,8]

In the real problem system in mathematical model, if variables 
which are using in the model do not show any variation with respect 
to time duration, then this system is in steady state. In a mathemati-
cal model, the untreated and diseased steady states are the two basic 
types of steady conditions.

Uninfected Steady State

If the human body shows no virus present in it and not any infect-
ed CD4+ T-cells present in it, this state is known as uninfected steady 
state. The virus presence in uninfected steady state in any human is 
zero. In the studying model for uninfected steady state, T = T0, I = 0 
and V = 0. We calculate the uninfected steady state T0 for the studying 
model given above as:

2
0 0T ( )T 0

Tmax
sδ ϕ δ+ − − =

2

0
4T  = , Where A = ,B = ( - ),C = -s;

2A Tmax
B B AC δ ϕ δ− ± −

By using quadratic formula we calculate the uninfected steady 
state 0T  i.e.,

2
0

Tmax 4T  = [( - ) ( - ) ]
2 Tmax

sδδ ϕ ϕ δ
δ

± +

Infected Steady State

If the human body shows virus and infected CD4+ T-cells present 
in it, this state is known as infected steady state [20]. By putting 

T=¯T, I=¯I and V=¯V in the under discussion model we find out the 

values of ¯T, ¯I and ¯V i.e., 
max

(1 ) 0,Ts T V I
T

ϕ δ ρ α− Τ+ − − Τ + =  (2)

 ¯ ¯  ¯ ¯ 0,T V I Iρ γ α− − =  (3)

 0.mI nV− =  (4)
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By solving above we get the values of T , I and V  as:

 
n ( + ) ,

m
T γ α

ρ
= (5)

 
max

1 [s - (1 - )],TI T T
T

ϕ δ
γ

= + (6)

 .mV I
n

= (7)

Infected Steady State Stability
For positive infected stable state ( , , )E T I V  we examine local sta-

bility by utilizing Routh-

Hurwitz standards [12]. First we find the jacobin matrix. For this 
the jacobin matrix J is

given as: ( )
0

M T
J V T

m n

α ρ
ρ γ α ρ
 −
 = − + 
 − 

 (8)

where 
max

2 ,TM V
T
δδ ϕ ρ

−
−

= − − −

The fundamental expression ( )det 0JλΙ − = ,

( )det det 0,
0

M T

I J V T
m n

λ α ρ

λ ρ λ γ α ρ
λ

 − −
 

− = − + + − = 
 − +  

 (9)

the characteristic equation of linearized system is :

3 2
1 2 3 0,K K Kλ λ λ+ + + =  (10)

Where

1 ,k n Mα γ= + + −

2 ¯ ¯,k n n m T M M Mn Vγ α ρ γ α αρ= + − − − − −

2
3 ¯ ¯  ¯ ¯ ,k mM T Mn Mn n V m T Vρ γ α α ρ ρ= − − − +

The equation 10 under discussion have negative real parts for all 

of its eigne values iff [12],
1 0K > , 

3 0K > , 
1 2 3 0.K K K− >

Uninfected Steady State Stability
For positive infected steady state ( )0 0 ,0,0 ,E T we examine local 

stability by using Routh- Hurwitz standards [12]. First we find the 
jacobin matrix. For this the jacobin matrix J is given as:

( )
0

00 0,
0

N T
J T

m n

α ρ
γ α ρ

− 
 = − + = 
 − 

 (11)

m x

0

a

 
2 .N
T

Where
Tββ ϕ= − −

The characteristic equation det ( ) 0I Jλ − =

 ( )
0

0det det 0 0,
0

N T
I J T

m n

λ α ρ
λ λ γ α ρ

λ

− − 
 − = + + − = 
 − + 

(12)

0   0,( )(( )( ) ( )( ))N n T mλ λ α γ λ ρ− + + + − − − =

2
0 ,( )( ) 0N n n n m Tλ λ λ αλ α γλ γ ρ− + + + + + − =

2
0 .( )( ( ( ) 0) )N n n m Tλ λ α γ λ α γ ρ− + + + + + − =

For linearized system of equations, the characteristics equation 
is:

3 2
1 2 3 0,k k kλ λ λ+ + + =  (13)

where

1 ,k n Nγ α= + + −

2 0 ,k n n m T N N Nnα γ ρ γ α= + − − − −

3 0 .k Nm T Nn Nnρ γ α= − −

The equation 13 under discussion have negative real parts for all 
of its eigne values iff [12],

1 3 1 2 30,  0,  0k k k k k> > − >  (14)

Reproduction Number
The reproduction ratio is quite smaller in model [7] with cure 

rate. Due to this, it is easy to control the disease and also decrease 
the infection speed of new HIV virus. The reproduction ratio is quite 
larger in model [7] without cure rate. Due to this, it is not easy to 
control the disease and also increase the infection speed of HIV vi-
rus. We demonstrate that the fundamental reproduction number 0R
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can generates a comprehensive prescription of the model [7] global 

interactions. According to the framework’s fundamental reproduc-

tion number 0R ,the equilibrium of the proposed infectious model 

is asymptotically stable if 0 1,R < and On the other side, the pandemic 

model’s equilibrium has a special endemic equilibrium if 0 1,R > and is 

likewise globally asymptotically stable. The model under discussion 

[7] have 0
0 ,TR

T
= where ( ) ,

n
T

m
α β
ρ
+

= without cure rate and be with 

cure rate, this modified as 0
0 ,TR

T
= where 

( )
.nT

m
γ
γ ρ

=
−

The compari-

son of the model with and without cure rate demonstrates that when 

compared to models lacking cure rates, the virus’s rate of infection is 

extremely sluggish. Therefore, the prototype with the highest treat-

ment regimen will be preferred.

Theorem 1. Suppose that

0 1,R <
The infected steady state ( , , )E T I V is asymptotically stable.

Proof : The reduced Jacobian matrix for the infectious stable po-
sition is

	
3 2

1 2 3 0,λ θ λ θ λ θ+ + + = (15)

where

10 0,n Mγ α= + + − >

20 ,n n m T M M Mn Vγ α ρ γ α αρ= + − − − − −
2

30 ,mM T Mn Mn n V m TVρ γ α α ρ ρ= − − − +

We have also 1 2 30 0 0 0− >

( , , )E T I V is locally asymptotically stable, according to the 
Routh-Hurwitz standards.

Theorem 2. System 1 is a competitive system.

Proof: For the system of equation [7], taking the matrix L as:

1 0 0
0 1 0 .
0 0 1

L
 
 = − 
  

 (16)

To defining partial order by the orthant, this system is competi-
tive in D.

3(( , , ) : 0, 0, 0).K T I V R T I V= ∈ ≤ ≥ ≥

We obtained with the fact of simple calculation,

max

2

0

T V T
T

fL L V T
X

m n

αδ ϕ ρ α ρ

ρ γ α ρ

 − − − − − 
 ∂

= − − − − 
∂  − − 

  

 (17)

Due to convexity of D, this system is competitive in D. In view of 
this Poincare-Bendixson property is satisfied by the system.

HIV Infection Model Using the cGP(k)-Technique
The HIV model’s system of ordinary differential equations could 

be characterised as: 

Take into account a time period [ ]0,T= with an ultimate time T 
that is positive.We find

:X Y→ such that

( ) ( )( ) ( )
( )

'

0

, 0, ,

0 ,

X t F t X t t T

X X

= ∀ ∈

=  (18)

where 0X Y∈  stands for the starting value at time 0,t =  and 'X  
signifies the derivative of ( )X t with respect to time ’t’. The semi-dis-
crete finite element response ( ) 11

X t Y∈ of a parabolicdifferential 
equation is represented by the vector of nodes at ( ) ( )( )K

X t X t Y= ∈

and 1,Y RΦ= respectively with

 
( ) ( ) { }

1

1 1 1
1

: 1,..., .
d

K K K
K

X t X t C andY span C K φ
=

= = =∑
(19)

The assumption is that the function :F Y Y× → is sufficient-
ly smooth which can be nonlinear.

To express the temporal discretization of the issue [18], we now 
initiate the following syllabaries. We select a subinterval K ⊂  to de-
scribe the steadiness of the function ( ).t X t→ We take into consider-
ation a set of m times continuously differentiable Y -valued functions 
on K  called a space ( ), ,m K Y� where the norm and semi-norm are:

( )
( ) ( )

( )
( ) ( )

C , 0

C ,

max sup ,

sup .

m

m

M
K Y M m Yt K

m
K Y Yt K

X X t

X X t

≤ ≤ ∈

∈

=

=
 (20)

Now, we obtain the collection of subintervals by dividing time in-
terval   into N  subintervals ( ]1 , ,n n nt t−= which is known as the 
time-mesh .R Ω

We use the time discretization parameter represented 
by the maximal time step size Ω , where
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1
max nn≤ ≤

Ω = Ω
�

 and 1.n n nt tΩ = − −

Let { }1 1,...., , ( , ]n n n nR t tΩ −= =    for 1,...,n = � and 

0 1 10 ... .t t t t T−= < < < < =� �
We will employ the ( )2 ,L Y space, 

which is defined as follows:

( ) ( ){ }2
2

,
, : :|| ||

L Y
L Y X Y X= → < ∞


   Where 

( ) ( )2

1/2
2

,
|| || || || .YL Y

X X dt= ∫ 

We use a piecewise polynomial :X YΩ → in time t of order 

M  to substantially simulate the

solution :X Y→ which means we are seeking for X Ω  in ei-

ther continuous time-discrete

space

( ) ( ) ( ){ }C , : , , ,c n M n nM
p R X Y X p Y RΩ Ω= ∈ ∈ ∀ ∈     (21)

or in discontinuous time-discrete space

( ) ( ) ( ){ }2 , : , , ,c
M n M n np R L Y p Y Rφ µ µΩ Ω= ∈ ∈ ∀ ∈     (22)

where ( ),nM
P y is a space of polynomials in time t with vector 

values of order ,M i.e.,

( ) ( )
0

, : : , , .
M

t k K
M n n n

K
p Y X Y X t X t t X Y K

=

 = → = ∀ ∈ ∈ ∀ 
 

∑  

For discrete function : ,X Y→ that are discontinuous at the 

end points of time intervals,

we define the left-sided and right-sided values nX − n and nX +

as well as the jump [ ]nX Ω respectively:

( )
0

lim ,
n

n t t
X X t

−

−
Ω→

=
 

( )
0

lim ,
n

n t t
X X t

+

+
Ω→

=
 

[ ] .n n nX X X− +
Ω = −

Moreover, we define the function values ( )nX t
Ω

with 1n ≥  on 

the interval ( )1 ,n n nt t−=  will be ( ) ,nnX t X −
Ω

= ( ) 00 .X x=

Here, we employ the space ( )c
mP R Ω

 as a time-discrete solution space 

and the space 
1( )C

mP R− Ω
 as a discrete test space. The discrete solu-

tion X Ω  has � . M  many undetermined degrees of freedom due 

to the beginning circumstances in Equation (18), and the test space 

size is also � . M .We multiply Equation (18) by the test function 

1( )C
mP RφµΩ − Ω∈ and integrate across the interval   to get the un-

known coefficients of XΩ . As a result, we get the issue known as a 

time-discrete global issue, which is as follows; Find ( )C
mX P RΩ Ω∈

such that ( ) 00X XΩ = and

 ( ) ( ) ( ( ) ) ( ) ( ), 1
0 0

' , , ,
T T

c

M
X t t dt F T t t dt pX R

φµ µ µΩ ΩΩ Ω Ω Ω −
= ∀ ∈∫ ∫  (23)

with .,. denoting the usual inner product in .Y RΦ= The pre-

cise continuous Galerkin- Petrov technique of order M, also known 

as the exact ( )cGP K − method, will be used to refer to this dis-

cretization. The test space 1( )C
mP Rφ
− Ω  differs from the ansatz space 

( )c
mP R Ω

,therefore earning the moniker Galerkin-Petrov. Exact 

refers to precisely evaluating the integral on the right side of issue 

(23). Since 
1( )C

mP Rφ
− Ω

space is discontinuous, the problem (23) can be 

solved by a time marching process where successively local problems 

on the time intervals are solved. For this purpose, we select a test func-

tion ( ) ( )t tµ µΩ = Ψ with an arbitrary time independent Yµ∈ and 

: ,RΨ → a scalar function which becomes zero on | n  and a poly-

nomial of orderless than or equal to 1M − on .n Then, from prob-

lem (23), we get n− problem of exact ( )cGP K − method, i.e., Find 

( )| ,( ) n M nP YX Ω ∈  such that ( )1 1 | ,n n ntX X −
− −Ω = and

 

( ) ( ) ( ( )) ( ) ( )'

1
, , , , ,

n n

nm
t t dt F t t t dt Y

l l
px x lµµ µ ψ

ΩΩ −
Ψ = ∈ ∀Ψ∈∀∫ ∫

(24)

with for 2,n ≥ ( )1 1 1 |n n nX tX−
− −Ω −=  and for 1,n = 01  n XX −

− =

. We numerically estimate the integrals on the right side of Equation 

(24) for non-linear functions. If the integrated function is a polynomi-

al with degree less than or equal to 2 1M − ,the ( 1)M −+ point Gauss 

Lobatto formula is accurate. In order to obtain the precise value, we 

apply this formula to the left side of Equation (24). Now, we take ref-

erence interval [ ]ˆ 1,1 .= − Denote the associated weights and nodes 

on ̂ as ˆKρ C and K̂t , where 0K = ,…,M. Then, using the numer-

ically integrated ( )cGP K − method, we arrive to the n− problem, 

which is, Find  | , )(n nMX P YΩ ∈  such that
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 ( ) ( ) ( ( )) ( )
( ) ( )

'

, , , , ,
0 0

1 1

, ,

1 .

M M

n k n k n k n k n kk k
k k

n n n

F

M

x t t t x t t
px t x l

ψ ψ

ψ

ρ ρ
∧ ∧

ΩΩ= =

Ω − −

=

= ∀ ∈ −

∑ ∑  (25)

The polynomial ansatz is used to define | nx lΩ
and to character-

ise it which is,

 ( )
( ) ,, ,

0
k

nn k t
k

t M tnx lX φΩ
=

= ∀ ∈∑  (26)

where ,
( )

k nMn
Pφ ∈  are Lagrange basis functions having 1k +  

nodal points 
,

ˆ
n k nt ∈ , and

kn Y Rx φ∈ = .This met the following requirements,

 ( ),1 ,,
, , 0,....., ,n i kn k
i k Mtφ δ= =  (27)

where the Kronecker symbol is represented by ,i kδ Like in [19],we 
select the nodes ,n kt as quadrature points of the ( )1M −+  point Gauss 
Lobatto formula on n . In particular, this means ,0 1n nt t −=  and ,nt

ntM = . As a result, the beginning conditions for Equation (24) are 
equal to the condition

( )0

1 1

0
0  2 1n n n nifn or ifnx l tX X XΩ − −

= ≥ = =
.

At this point, we use an affine reference transformation to define 
the basis function 

,n kφ  i.e, : ˆ
nnT →  with ( ]ˆ 1,1= − and

 ( ) 1ˆ ˆ
2 2

n n n
n n

t tt T t t l− + Ω
= = + ∈

 ∀  
ˆˆ ,t l∈ 1,...,n = �

. (28)

Let ( )ˆ M n
k

Pφ ∈   represent the basic functions that meet the fol-
lowing criteria

, , , 0,..., ,i k
ik

i k Mt δφ
∧ ∧  = ∀ = 

 

where ît  stands for the points of quadrature for n̂l .

By doing this, we define the base functions on n using the con-
ventional mapping.

( ) ( )1 1
,

2
2

n n
nn k

k n

t t with t t t lt tTφ φ
∧ ∧ ∧− −

+ ∧  = = = − ∈  
   Ω

The test basis function 
,n iψ is defined in a similar manner by 

utilising the preferred reference basis function ( )1M
i

np −
∧ ∈Ψ  i.e.,

( ) ( )( )1
, , , 1,..., .n i n n

i i
t t t t i MlT

∧−∧ ∧  = = ∀ ∈ = 
 Ψ Ψ Ψ

From Equation (26), we get for '
'X Ω

( ) ( )
' '

,
0

,k

M

n k t n
k

t tn lX XΩ
=

= ∀ ∈∑ Φ  (29)

This results in the following formula for each test basis function 
ψ and Yµ∀ ∈ ,

 
( ) ( )'

0 0
, , ' ' .k

n

M M

k
k

t t dt n
l

t tX X η ηη
η

µ µρ φ
∧ ∧ ∧ ∧∧

Ω
= =

   Ψ = Ψ   
   

∑ ∑∫
 (30)

Last but not least, if we choose test function ( )1, Mi nn
pψ −∈  in a 

way that results in the special form of the numerically integrated n−  
problem of ( )cGP K such that,

1

, , , 1,..., .i i n i Mtη η
ηρ δ

∧∧∧
−   = ∀ =  

   
Ψ

We already have the non-linear ( )M M× −block framework 
with 

0

1n nX X −

−
= as the initial value in order to determine the answers 

, 1,...,kn
X Y K M∈ = shown as,

 
( ){ ( )}0

, ,0,,
0

, 1,..., .
2

M
k in
n n nn i ni k i

k
F F i Mt tX X Xγ β

=

= + ∀ =Ω∑
 (31)

where ,i kγ  and iβ  are defined as:

 0 0, 0
' ' , iii k k i k it t tγ φ β φ β ρ

∧ ∧ ∧∧ ∧ ∧∧     = = =     
     Ψ  (32)

Utilizing the Lagrange basis function ,n kφ has the benefit that the 
coefficients kn

X Y∈  have the meaning ( ),k n kn
X X tΩ= with re-

gard to some places ,n k nt ∈   We will describe this approach for the 
scenarios 1M = and 2M =  in the next approaching two subsec-
tions:

( )1cGP −Method

The Trapezoidal rule is produced by applying the two-point 
Gauss-Lobatto formula with the weights 

0 1ˆ ˆ 1 ρ ρ= = and the quadra-
ture points ,0 1 ,1, .n n n nt t t t−= = Then, we acquire 

1,0 1,1 11, 1, 1.γ γ= − = Ω =
The solution to this issue yields the block-equation shown below, 
where coefficient ( )1n nX X t YΩ= ∈

 ( ){ ( )}1 0 1 0
1, .

2
n

n nF Fn n n nt tX X X X−
− = +Ω

(33)

cGP(2)-Method

Now,we utilise the Three-point Gauss-Lobatto algorithm to get 
the Simpson’s rule using the weights 0 2 2

1 4ˆ ˆ ˆ, ,
3 3

 ρ ρ ρ= ==  and the 
quadrature points 

1
,0 1 ,1 ,2 ., , .

2
n n

n n n n n
t tt t t t t−

−

+ = = = 
 

 The

coefficients were then computed as,
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 ,

5 1 11
, 1, 2, 0,1, 2.4 4 2

42 2 1
,i k i

i andkγ β
−   
   = = = =
   −
   

(34)

We must find solutions for two unknown functions with 

( ),k n kn
X X tΩ= and a time period of ( ]1,n n nt t−= with ( ),

ˆ
n k n kt T t=

for 1,2.K =  We will receive the connected ( )2 2× − block system 

for 1 2,n n
X X Y∈ that is described as,

 
{ ( ) ( )}
{ ( ) ( )}

1 2 0 1 02
,1, ,0,

1 2 0 2 0

,2, ,0,

1 5 1 ,
4 4 2 2

4 2 2 .
2

n n n n nn n

n
n n n n nn n

F F

F F

t tX X X X X

t tX X X X X

+ = = +

− + = − + −

Ω

Ω

(35)

Numerical Tests and Results

In this research paper, we obtained the results of the model [7] by 
using the ( )2cGP −

method and demonstrate the results graphically 
and numerically. The detailed values of different parameters used in 
the model are discussed in the (Table 1). We graphically depict the 
variations in the population of healthy T-cells, infectious T-cells, and 
free HIV pathogens with constant and varied variable source terms. 
The graphic findings of T(t), I(t) and V(t) demonstrate decaying os-
cillatory behaviour with somewhat different population dynamics 
employing variable and invariant source terms. (Figure 1) shows the 
effects of variable source term on healthy CD4+ T-cells. It is obvious 
that populace flow of healthy CD4+ T-cells changes with the change 
of invariant source terms. From the (Figure 1), It is clear that popu-
lace flow of T-cells of source term s3 appears significantly different 
from source terms s0, s1 and s2 throughout the time period. Simi-
lar behaviour is seen for the population dynamics of infected T-cells 
and free HIV virus particles in (Figures 2 & 3) respectively, whenever 
these source terms are impacted.

Table 1: An overview of the model’s parameters, variables, and their values.

Variables Description Values Ref.

T(0) Concentration of healthy CD4+ T-cells 1000 mm−3 [6,8]

I(0) Concentration of diseased CD4+ T-cells 0 mm−3 [8,20]

V(0) Concentration of HIV virus particle 10−3mm−3 [8,20]

m The rate of reproduction of tainted CD4+ T-cells 800 mm3day−1 [20]

γ Cover passing rate of tainted CD4+ T-cells 1 mm−3day−1 [20]

δ Growth rate of CD4+ T-cell population 0.5 mm−3day−1 [20]

ρ Viral Rate of infection of CD4+ T-cells 0.0002 mm−3 [20]

n Passing rate of free viral infection 5 day−1 [20]

Tmax Maximun CD4+ T-cells populace level. 1200 mm−3day−1 [11,20]

α Cure success rate 0.01 mm−3day−1 [20]

s Constant source term 5 mm−3day−1 [20]

φ Death rate of healthy T-cells 0.01 mm−3day−1 [20]
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Figure 1: The impact of source terms on the amount of free-diseased CD4+ T-cells.

Figure 2: The impact of source terms on the amount of diseased CD4+ T-cells.
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Figure 3: The impact of source terms on the amount of free HIV particles

Figure 4: Comparison the outcomes of cGP(2) and RK4 methods of uninfected CD4+ T-cells.
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Figure 5: Comparison the outcomes of cGP(2) and RK4 methods of infected CD4+ T- cells.

Figure 6: Comparison the outcomes of cGP(2) and RK4 methods of free HIV particals.
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Contrast Between the Outputs of cGP(2) and RK-4 
Method

For the verification of results, we also find solution by using RK-4 
method graphically and numerically [23]. It is seen that results ob-
tained from both methods, ( )2cGP −

method and RK-4 method, are 
in great interest with each other (Tables 2 & 3). From comparison it 
is observe that, for the model compared to existing approaches, in-
cluding HPM [24], LADM [25,26], MVIM [21], VIM [22], the suggest-

ed method yields findings which are highly consistent. We illustrate 
the results of both methods graphically through (Figures 4-6). The 
graphical results are over lapping and this leads to the accuracy of 

( )2cGP −
method [27]. Results depicted in (Figures 4-6) shows that 

( )2cGP method and classical RK-4 method are in great agreement 
[28-30]. These findings suggest that the ( )2cGP −

method should prop-
erly forecast how these variables would behave in the region under 
consideration [31,32]. 

Table 2: Results of cGP(2) for T(t), I(t) and V(t).

ti T(t) I(t) V(t)

0.0 0.0030000000000E+004 0.0400000000000E+004 0.0600000000000E+004

0.1 0.0024672976873E+004 0.0368862242343E+004 2.4404731353515E+004

0.2 0.0014417811617E+004 0.0344877879548E+004 3.7199419043613E+004

0.3 0.0007273324619E+004 0.0319783810762E+004 4.3428095921196E+004

0.4 0.0003661120037E+004 0.0293485224537E+004 4.5577245428577E+004

0.5 0.0002068305368E+004 0.0267664547674E+004 4.5233917552241E+004

0.6 0.0001405062728E+004 0.0243373470149E+004 4.3448923636214E+004

0.7 0.0001140380451E+004 0.0220997311366E+004 4.0901489926182E+004

0.8 0.0001047396652E+004 0.0200580544613E+004 3.8014782771634E+004

0.9 0.0001032621238E+004 0.0182030474896E+004 3.5042882065646E+004

1.0 0.0001057153140E+004 0.0165208804591E+004 3.2132214761789E+004

Table 3: Results of RK4 method for T(t), I(t) and V(t).

ti T(t) I(t) V(t)

0.0 0.0030000000000E+004 0.0400000000000E+004 0.0600000000000E+004

0.1 0.0024524371458E+004 0.0369016721124E+004 2.4376720749710E+004

0.2 0.0014311665491E+004 0.0344978099434E+004 3.7175667837071E+004

0.3 0.0007242532779E+004 0.0319797465293E+004 4.3413982118273E+004

0.4 0.0003665104520E+004 0.0293460470797E+004 4.5567763862916E+004

0.5 0.0002078267744E+004 0.0267634814329E+004 4.5225801551873E+004

0.6 0.0001412454030E+004 0.0243348570104E+004 4.3441490208839E+004

0.7 0.0001144761511E+004 0.0220977602306E+004 4.0894889591043E+004

0.8 0.0001049850049E+004 0.0200564593800E+004 3.8009155526975E+004

0.9 0.0001034015202E+004 0.0182017102892E+004 3.5038212171474E+004

1.0 0.0001057988300E+004 0.0165197277374E+004 3.2128387842356E+004

Conclusion and Discussion

In this manuscript, the ( )2cGP − technique is being used to give 
the numerical results of a comprehensive framework for HIV infec-
tion of healthy T-cells. Researchers wanted to know how the avail-
ability of fresh, competent T-cells from the thymus would affect the 
HIV infection prototype, both in terms of constant and varied change-
able source terms [33,34]. The analysis showed that the interaction 

of healthy T-cells, infected T-cells, and free HIV virus particles com-
municate in a dulled fluctuating way for all types of source terms 
during the time frame, although their population rates only under-
go minor variations. Regarding source term s3, there is a dramatic 
shift in T(t), I(t) and V(t) absorption over time duration, but for other 
source terms, the dynamical behaviour is almost the same at first and 
then modifications only become visible subsequently. Throughout the 
phase diagram, all of the source terms initially have complexities that 
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are comparable to one another, but their population dynamics diverge 
from one another over time duration. On the other side, we used the 
RK4-method to solve the problem and have quantified comparisons 
of the T(t), I(t) and V(t) solutions generated by utilising ( )2cGP −

method, RK4-method, and other traditional approaches. Last but 
not least, we represented the numerical curves produced by the 

( )2cGP − method and RK4-method. We find it noteworthy that, when 
compared to other approaches utilised for the HIV infection frame-
work, the effectiveness of the ( )2cGP −

method and the RK4-method 
is almost the same.
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