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ABSTRACT

The QCT (Quantitative Complexity Theory) algorithm has been applied to the analysis of the folding 
process of a protein composed of 435 atoms, monitoring its complexity at each step thereof. The folding has 
been simulated using Molecular Dynamics Simulation. The analysis has revealed that, while in the native 
state, the protein’s configuration minimizes its energy, its complexity reaches a maximum. This result 
is interesting in that, according to the QCT, complexity is information that is encoded in structure. It is 
conjectured that the native state of a protein is a minimum energy-maximum information state. Moreover, 
QCT allows us to determine the footprint of each constituent amino acid in the dynamics, information 
content and robustness of a protein’s structure. The application of QCT on proteins generates data and 
information about structure, complexity, special arrangements, etc., of proteins. The knowledge about the 
biological functions of such proteins derived from the above – which is crucial e.g., for designing new drugs 
- will have to be generated in collaboration with specialists from pharmaceutical R&D.
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Introduction and Background
Since its introduction in 2005, the Quantitative Complexity The-

ory (QCT) provides quantitative and holistic information on the state 
of generic multi-functional dynamic systems [1]. Its applicability and 
advantages in medicine have been demonstrated in predicting clinical 
events in cardiac resynchronisation therapy [2,3], or of the outcome 
of the Head Up Tilt Test [4], where complexity profiling has provided 
a detailed assessment of individual hemodynamic patterns of synco-
pe. Complexity has been shown to be a sensitive marker of a cardio-
vascular hemodynamic response to orthostatic stress and vasodilator 
administration, and its increase has preceded changes in standard 
cardiovascular parameters [5]. A recent application of the QCT is in 
the field of Molecular Dynamics [6]. By processing spatial trajecto-
ries of atoms in a molecule, the QCT allows to measure the complexity 
of a molecule, its robustness, and provides a detailed breakdown of 
how information is encoded in the molecule in the form of a graph-
ical representation, known as a Complexity Map. Furthermore, the 
application of the QCT to the results of Molecular Dynamics Simula-

tions allows us to establish a molecule ranking mechanism in terms 
of complexity, robustness and, potentially, use them to predict certain 
physical-chemical properties.

Proteins are modular constructs. They are formed by chaining 
amino acid molecules, with the smallest amino acid (glycine, C2H3NO) 
having 7 atoms and the largest (pyrrolysine, C12H19N3O2) having 36. 
Depending on how many amino acids there are in a protein (ranging 
from a few dozen to several thousand), the number of atoms varies 
immensely. The smallest known protein is TRP-cage, with only 20 
amino acids and 154 atoms. Understanding and simulating the pro-
tein folding process has been an important challenge for computa-
tional biology since the late 1960s. The present paper describes the 
application of the QCT to the analysis of the folding process of a pro-
tein composed of 435 atoms. The process of folding has been simulat-
ed in an aqueous environment using Molecular Dynamics Simulation 
from the unfolded to the native state, producing the x, y and z coordi-
nates of each atom over time.
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The Quantitative Complexity Theory
Complexity is a new descriptor of a system. The complexity of a 

system described by a vector {x} of N components is defined as a sca-
lar function of Structure and Entropy as follows: C = f (S ○E), where 
S represents an N × N adjacency matrix, E is an N × N entropy ma-
trix, “○” is the Hadamard matrix product operator and f is a matrix 
norm operator. Since complexity is a function of entropy, and given 
that S has no units, its units are bits. The above equation represents a 
formal definition of complexity, and it is not used in its computation. 
The adjacency matrix is determined via a propriety multi-dimension-
al algorithm which determines if entry Sij is 0 or 1. This establishes 
the structure of the system in question. The intensity of relationships 
between the components of {x}, the so-called generalized correlation, 
is computed based on concepts of entropy and Shannon’s Informa-
tion Theory, [6]. This approach has been chosen because it avoids the 
drawbacks of conventional techniques whereby one analyses data 
via regression models, cluster analysis or other methods. The huge 
advantage of this “model-free” approach is that it is independent of 
numerical conditioning of the data and its ability to identify the ex-
istence of structures where conventional methods fail. Once the en-
tropy matrix and the adjacency matrix have been obtained, one may 
compute the complexity of a given system as the following matrix 
norm: C = || S ○ E ||. A fundamental property of the above measure 
of complexity is that it is bounded. The upper bound, called critical 
complexity, CU, as well as the lower bound, CL, are also computed 
based on proprietary algorithms. The robustness of a system, R, may 
be computed as a function of the ratio (C - CU) / (CU - CL) and ranges 
from 0 to 100%. In proximity of the lower complexity bound, a given 

system functions in a deterministic structure-dominated fashion. In 
proximity of critical complexity system functioning is chaotic and re-
lationships between the various entries of {x} are fuzzy and therefore 
characterized by very low generalized correlations. This means that 
the structure, S, is feeble and therefore has low robustness.

From Molecular Dynamics to Protein Complexity
Molecular Dynamics simulation, first developed in the late 70s, 

has advanced from simulating structures several hundreds of at-
oms to systems with biological relevance, including entire proteins 
in solution with explicit solvent representations, membrane embed-
ded proteins, or large macromolecular complexes like nucleosomes 
or ribosomes. Simulation of systems having ~50,000–100,000 atoms 
are now routine, and simulations of more than 500,000 atoms are 
common when appropriate computer facilities are available. This re-
markable improvement is in large part a consequence of the use of 
high-performance computing (HPC), and the simplicity of the basic 
MD algorithm (see figure below) (Figure 1). An initial model of the 
system is obtained from either experimental structures or compar-
ative modelling data. Once the system is built, forces acting on every 
atom are obtained by deriving equations, the force-fields, where po-
tential energy is deduced from the molecular structure. Once the forc-
es acting on individual atoms are obtained, classical Newton’s law of 
motion is used to calculate accelerations and velocities and to update 
the atom positions. As integration of movement is done numerically, 
to avoid instability, a time step shorter than the fastest movements in 
the molecule should be used. This ranks normally between 1 and 2 fs 
for atomistic simulations. 

Figure 1: Simplified scheme of the Molecular Dynamics Simulation algorithm. 
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Figure 1: Simplified scheme of the Molecular Dynamics Simulation algorithm. 

Figure 2: A protein’s energy well, showing the unfolded and native states.

Figure 3: Evolution of protein’s complexity over time. As the protein approaches its native state its complexity increases.
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Proteins tend towards their native state, which occupies a (local) 
minimum energy position in the protein’s energy landscape, see fig-
ure below (Figure 2): The QCT algorithm has been applied to a pro-
tein comprised of 435 atoms. Molecular Dynamics simulation has 
been utilized to determine the position of each of the atoms as the 
protein transitioned from its unfolded to the native state. The data has 
been provided by the CINECA Supercomputer Centre in Bologna, Italy 
(https://www.cineca.it/). The simulation output has been analyzed 
with the QCT algorithm using a moving window. The evolution of 
complexity of the protein is illustrated in the figure below (Figure 3). 
It may be observed that complexity tends towards a maximum. While 
a protein tends toward a minimum-energy configuration, at the same 
time it maximizes its own complexity. This makes sense if we recall 
the definition of complexity: complexity is structured information, 
or information that emanates from structure. In multidimensional 
systems each dimension carries information independently of other 
dimensions. However, the additional information that is derived from 
the interdependencies between the different dimensions is often sig-
nificantly larger than that of the single dimensions. The shape (struc-
ture) of a protein encodes information. For given ensembles of amino 
acids, which will ultimately fold into a protein, two things happen: the 
protein’s energy is minimized and, at the same time, the amount of 
information that it can encode with those amino acids is maximized. 

With all likelihood – this is only a conjecture – the final state of a pro-
tein is a compromise (combination) of these two characteristics: min-
imum energy and maximum information.

The importance of structure cannot be overstated. Structure 
drives functionality and in the context of the QCT, structure is defined 
by the exchange (flow) of information between the various dimen-
sions of a given system. Systems with more structure can perform 
more functions. Not surprisingly, in our biosphere there is a drive to-
wards states of higher complexity (higher functionality) and higher 
robustness (fitness). The QCT not only establishes this structure, S, 
it also measures the amount of information it carries, C, as well as 
its robustness, R. The figure below illustrates a simple example of 
a hypothetical protein, composed of 6 amino acids (for a total of 26 
atoms), its Complexity Map and, the Complexity Profile, which ranks 
the information footprint of each amino acid in the entire protein. In 
other words, the Complexity Profile indicates which amino acids are 
the drivers of the overall dynamic properties of the protein. In the 
example below, amino acid 1 carries almost 35% of the complexity 
of the protein, amino acid 2 close to 26% and amino acid 3 just under 
25%. In essence, these three amino acids drive over 85% of the pro-
teins structure, its dynamics, as well as the protein’s robustness and 
stability (Figure 4).

Figure 4: Example of a hypothetical protein’s Complexity Map. The protein’s Complexity Profile on the right-hand side provides a ranking of the 
degree of participation of each amino acid in the protein’s complexity and its dynamics.

https://dx.doi.org/10.26717/BJSTR.2023.50.007914
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The evolution of the Complexity Map of the 435-atom protein is 
shown below. The number of nodes on the diagonal is 435 x 3 = 1305, 
which corresponds to the number of degrees of freedom (Figure 5). 
The map on the right-hand side, corresponding to the native state of 
the protein, is shown below. The entries of the map’s diagonal are the 
x, y, z coordinates of each atom and off-diagonal dots represent the 
presence of dynamic coupling between degrees of freedom (Figure 
6). While the above results need to be verified by analyzing other 
proteins, it appears that a minimum energy-maximum complexity 

(information) state is an attractor which results from the process of 
folding. The more information a protein encodes, the more functions 
it can potentially perform. The protein’s Complexity Landscape is il-
lustrated below. The landscape reflects the evolution of the protein’s 
Complexity Profile over time. One may notice how in the initial, un-
folded configuration, there are certain amino acids that dominate the 
dynamics of the folding process. However, the footprint (participation 
factor) of each amino acid in the protein’s native state is distributed 
more evenly (Figure 7).

Figure 5: Evolution of the structure of the protein’s Complexity Map. The map provides a graphical representation of how information is encoded 
in the protein. QCT analysis of the 435-atom protein requires just over 20 hours on an i9 CPU, and around 10 minutes on a 128-core system.

Figure 6: Structure of the protein’s Complexity Map in proximity of its native state. The robustness of the protein’s structure is R=60% and it may 
be linked to the protein’s life span.
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Figure 7: Protein’s Complexity Landscape. In the initial state there were a few ‘dominant’ atoms (amino acids) while in the native state, the amino 
acid participation factors are distributed more uniformly.

Future Work 
In order to verify that in its native state a protein assumes a condi-

tion of maximum complexity – the encoded information is maximum 
– the processing of a larger number of proteins will be required. More-
over, the goal is to analyse the complexity of selected proteins while 
they perform functions such as chemical messengers or enzymes. In 
these contexts, the QCT algorithm in conjunction with Molecular Dy-
namics Simulation is able to furnish the following information:

1.	 Measure the complexity of a protein. This provides insights 
into the way information is encoded and distributed spatial-
ly. This can be performed at amino acid or atomic level.

2.	 Measure the robustness of the protein’s structure, indicating 
concentrations of fragility. This can be performed at amino 
acid or atomic level. A protein’s life span and stability may be 
linked to its robustness, and it is possible to identify which 
amino acids control the structural stability of that protein.

3.	 Amino acid participation factors. These provide a ranking 
of amino acids in terms of their footprint on the overall be-
haviour of a protein. Such information may be useful when it 
comes to designing new therapies.

The application of QCT on proteins generates data and informa-
tion about structure, complexity, special arrangements of atoms etc. 
of the proteins. The knowledge, however, about the biological func-
tions of the proteins derived from the above will have to be generat-
ed in collaboration with specialists from pharmaceutical R&D. This 
knowledge is crucial for designing new drugs.
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