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ABSTRACT

MicroRNAs (miRNAs) are extensively studied noncoding and conserved post-transcriptional gene 
regulators in the genome. Since their discovery in 1993, miRNAs have gained significant interest due to 
their involvement in numerous biological processes. In addition, their altered expression levels in various 
diseases have led to the study of their potential use as biological biomarkers in several pathologies, 
including neurodegenerative pathologies. Neurodegenerative diseases (NDs) encompass a diverse group 
of pathologies of diverse etiology, but they share common features and mechanisms leading to neuron 
destruction and death. The conventional diagnosis of ND involves a comprehensive clinical examination, 
consideration of the patient’s medical history, neuroimaging and MRI techniques, and clinical laboratory 
tests. However, most ND symptoms become evident up to 10-15 years after disease onset. This highlights 
the need for early biomarkers and rapid diagnostic platforms that are sensitive and enable periodic 
preventive controls in people with risk factors. This mini review addresses the challenges in the clinical 
diagnosis of neurodegenerative diseases and explores the potential of miRNAs as early biomarkers for 
detecting ND. In addition, the development of electrochemical biosensors and bioassays for specific targets 
are presented in this revision. 
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Neurodegenerative Diseases
Neurodegenerative diseases (NDs) are characterized by 

the gradual degeneration and destruction of motoneurons. 
Neurodegenerative diseases involve processes such as protein 
aggregation and/or degradation, oxidative stress, mitochondrial 
dysfunction, and bioenergetic damage [1]. Conformational changes 
in protein sequences lead to the accumulation of misfolded proteins 
both inside and outside of the cells. The most relevant NDs include 
Alzheimer’s disease (characterized by abnormal tau protein 
phosphorylation), Parkinson’s disease (marked by intraneuronal 

aggregates of α-synuclein), Lewy body dementia and Huntington´s 
disease [2]. Gradual neuronal degeneration leads to a loss of 
functionality and personal independence, making caregivers and 
medical attention necessary. The impact of NDs is substantial, with 
global healthcare costs exceeding hundreds of billions of dollars 
annually, according to the World Health Organization (WHO) [3]. 
Expenses include social and healthcare costs, as well as the loss 
income for affected individuals and their caregivers [4,5]. Due to their 
high social and economic impact, the WHO has declared dementia, 
predominantly caused by Alzheimer’s, [6] as a priority disease in the 
Mental Health Action Programme, and the European Parliament has 
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also emphasized the fight against Alzheimer diseases (AD) through 
the Declaration on priorities in the fight against Alzheimer’s disease 
(2010/C 76 E/17) [7].

The prognosis for NDs is complex due to factors such as age, family 
history, and genetic or environmental influences. Diagnosis typically 
involves a comprehensive clinical examination, medical history 
assessment, neuroimaging (MRI, PET scans), genetic analysis for 
ND-related mutations, and cerebrospinal fluid (CSF) tests [7] which 
require lumbar puncture. However, early diagnosis is challenging as 
initial clinical symptoms often manifest 10-15 years after the onset 
of anatomophysiological changes [8,9]. Currently no single test 
can accurately identify most of these neurodegenerative diseases. 
Moreover, postmortem examination by immunohistochemistry is 

often necessary for their correct diagnosis [10]. Early diagnosis is 
critical to slow their progression. It was demonstrated that several 
pathologies, such as cardiovascular diseases, cancer or NDs, exhibit 
altered levels of miRNAs, which can remain stable in blood, CSF, 
urine, or saliva. Thus, these molecules hold promise as potential 
early biomarkers. Identifying ND-related miRNAs could guide the 
development of new detection strategies for these small nucleic acids 
in biological fluids, enabling less invasive and more specific diagnostic 
methods for NDs. Therefore, the level of specific miRNAs is of great 
clinical relevance, encouraging the development of new detection 
strategies for small nucleic acids in biological fluids and favoring 
their use as early biomarkers by using less invasive and more specific 
methods for ND diagnosis (see Figure 1).

Figure 1: Scheme of the main elements necessary for early neurodegenerative disease diagnosis.

The miRNAs 
MicroRNAs (miRNAs) are short fragments of noncoding 

ribonucleic acid (RNA), approximately 18-25 nucleotides in 
length that play a role in gene expression regulation at the post-
transcriptional level. They were first described in the late 20th 
century during studies on developmental regulation in the nematode 
Caenorhabditis elegans. [11] These small RNA molecules are found in 
multicellular organisms and are involved in regulating physiological 
events such as cell proliferation, differentiation or apoptosis by 
inhibiting the translation of target messenger RNA (mRNA) molecules. 
This regulatory mechanism primarily involves binding to mRNA 
sequences, hindering the translation mechanism and preventing 

protein formation. [12] miRNAs are highly conserved across species 
and are typically located in intragenic regions of the genome, mostly 
within introns and less frequently in exons. The main characteristic of 
miRNAs is that they are derived from endogenous precursors, exhibit 
phylogenetic conservation and do not encode protein products. 
miRNAs play crucial roles in embryonic development and tissue 
differentiation, exerting control at the post-transcriptional level in 
almost all cell types [13]. This characteristic, along with the discovery 
of altered miRNA expression profiles in various diseases, has led to 
their investigation as potential biomarkers. In 2008, it was shown 
by Mitchell et al. that miRNAs are not limited to the intracellular 
environment, since they are present in the bloodstream [14]. Later, 
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their presence in other body fluids, such as saliva, tears, urine, serum 
and cerebrospinal fluid (CSF), was also reported. These circulating 
miRNAs are protected from degradation by ribonucleases in the 
extracellular environment through their binding to lipoprotein or 
their incorporation into vesicles, rendering them highly stable under 
adverse conditions [14]. However, isolation procedures are usually 
necessary prior to their identification and study. 

Circulating miRNAs as Disease Biomarkers
In recent years, alterations in miRNA patterns at the cellular/

tissue level, specifically associated with pathological processes such 
as inflammation or neurological disorders, have been reported [15]. 
These unique expression profiles do not depend on race, age or 
sex, making miRNAs excellent candidates as diagnostic biomarkers 
[15,16]. Due to their stability in body fluids and the specific 
expression profiles that can reflect the status of specific organs or 
conditions, circulating miRNAs have been studied as ND biomarkers. 
For example, a study by Khoo SK et al. in 2009 demonstrated the 
efficacy of circulating miRNAs as biomarkers for Parkinson’s disease 
(PD) [15]. The study recruited patients diagnosed with idiopathic PD 
from a Health Care Parkinson’s Center, as well as healthy individuals. 
Peripheral blood samples were collected to isolate total RNA and 
microRNA. This work identified nine predictive Parkinson classifier 
pairs and 13 miRNAs with altered expression levels in patients [15] 
compared to healthy controls. For the predictive Parkinson classifier 
pair, the interpretation was as follows: pair (miR-1307/miR-632) “If 
miR-1307 expression is higher than miR-632 expression, the patient 
is predicted to have PD; otherwise, the patient is predicted to be a 
healthy control”.

MicroRNA Detection Procedure
The detection of miRNAs as biomarkers in biological fluids 

requires accurate, sensitive, reproducible and multiplexed methods 
[17]. In general, the choice of method will depend on the quantity 
and quality of the biological sample. The detection process comprises 
three stages: isolation, amplification, and detection. The isolation 
of miRNA from the biological matrix is crucial. This involves 
pretreatment of the sample, using chaotropic agents, detergents 
and/or organic solvents to promote the lysis of lipidic vesicles and 
lipoproteins [17]. In addition, centrifugation or solid-phase extraction 
through affinity columns is also necessary to remove particulate 
components and debris from the sample. Due to their low abundance, 
miRNA purification could necessitate the use of amplification 
methods to facilitate their detection. Polymerase chain reaction (PCR) 
is the most widely used amplification method to detect and amplify 
low-abundance nucleic acids. Conventional PCR amplifies a specific 
segment by repeated thermal cycles of denaturation, annealing and 
extension. In the case of RNA templates, a reverse transcription 
step is added to convert RNA to DNA (RT‒PCR protocol). In the last 

decade, several powerful isothermal amplification strategies have 
been developed for the sensitive detection of miRNAs. The isothermal 
amplification technique replicates nucleic acids at a constant 
temperature, eliminating the need for thermal cyclers and making 
them more cost-effective and simpler to implement in point-of-care 
(PoC) tests. These techniques include a variety of methods in which 
different combinations of enzymes or primer designs are involved in 
their amplification protocol [18].

However, amplification techniques need to be integrated into 
detection platforms to enable the correct identification of specific 
miRNA sequences. Standard methods for miRNA detection are based 
on gel electrophoresis and molecular hybridization with fluorescence 
probes [19]. However, from a medical standpoint, the urgent need for 
current diagnostic devices is not only focused on high sensitivity but 
also on portable and simple-use devices that can be performed at PoC. 
Biosensor technology has the potential to speed up detection and to 
increase specificity and sensitivity. Moreover, they may enable high-
throughput analysis and may be used for early diagnosis. Today, they 
are replacing other more sophisticated techniques, and they will be 
an important tool in healthcare applications.

Electrochemical Biosensors for ND Diagnosis
A biosensor is an electronic device used to transform a biological 

interaction into an electrical signal. This device is based on the direct 
spatial coupling of the immobilized biologically active element, the 
so-called “bioreceptor”, with a transducer that acts as a detector and 
electronic amplifier [20]. Electrochemical transduction offers the 
advantages of high sensitivity, which can be enhanced by attaching 
biocatalytic labels to bioreceptor-target complexes to amplify 
the detection signal, is readily miniaturized, and has a low cost of 
production since it does not require expensive instrumentation 
for read-out (Figure 2) [21]. Although several alternatives have 
been proposed and different miRNA detection strategies have been 
reported, the development of sensor platforms for the diagnosis of 
neurodegenerative diseases is limited. The initial electrochemical 
approaches were based on enzyme-linked magneto-immunoassays, 
as proposed by Erdem et al. in 2013 [22]. They used a screen-printed 
electrode (SPE) array combined with streptavidin-magnetic particles 
as a solid support to immobilize biotinylated specific capture probes 
to miR-15a. For detection, an alkaline phosphatase-streptavidin 
conjugate was used. Other examples include the multiplexed detection 
of three different miRNAs (miRNA-15a, miRNA-16, and miRNA-660), 
all AD related, using voltammetry readout [23]. The same research 
group has also developed voltammetric and impedimetric sensors 
for the detection of miRNA-34a, another AD biomarker [24,25]. 
They modified pencil graphite electrodes with graphene oxide 
(GOx). While the sensor showed good selectivity for miRNA-34a, the 
detection limits were moderate. Other electrochemical strategies, 
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such as electrochemical impedance spectroscopy using molybdenum 
disulfide nanosheet-modified electrodes, have been developed with 

better performance. However, this methodology has been developed 
for cancer biomarkers [26].

Figure 2: Schematic representation of biosensor components and its applicability.

The incorporation of nanomaterials such as graphene, graphene 
oxides, and gold nanostructures in the development of diagnostic 
platforms, especially in the fabrication of electrochemical biosensors, 
has been shown to be highly attractive for improving the sensitivity of 
the methods. Liu et al. fabricated triangular electrodes by combining 
nanomaterials such as GOx and gold nanostars conjugated with 
capture probes for the detection of miRNA-137 as an Alzheimer’s 
biomarker [27]. The obtained results have demonstrated detection 
limits on the order of 10 fM. Another approach for the same target 
was reported by Naderi-Manesh’s group. They developed an 
electrochemical nanobiosensor for ultrasensitive detection of miR-
137 using electrodes modified with gold nanowires, electrochemically 
reduced GOx, and doxorubicin to enhance the sensitivity to the 
fM range. [28] This system, tested in human serum, has revealed 
its potential as a diagnostic tool for Alzheimer’s disease. Another 
example is SPE modification with gold nanoparticles and methylene 
blue-labeled anti-miRNA-29a probes, reported by Miglione et al. 
[29]. These electrodes were used for square wave voltammetry 
measurement for miRNA-29a detection, a class of miRNAs known to 
regulate the pathogenesis of AD. This sensor was evaluated in serum 
and buffer, showing limited detection limits. 

Other sensing designs, in this case for miR-137 and miR-
142 detection (AD biomarkers), have reported a fluorescence 
nanobiosensor coupled with isothermal amplification of miRNAs by 

hybridization chain reaction [30]. The levels of these miRNAs were 
quantified using SYBR green as a fluorescent marker and graphene 
oxide (GoX) as a fluorescence quencher. Fluorescence intensity 
was used to quantify the miRNA levels based on the creation of 
hybridization events when the target miRNA was present in a serum 
sample. In the same way, a label-free electrochemical nanobiosensor 
was used for the detection of miR-155, a biomarker for multiple 
sclerosis. The high sensitivity of the nanobiosensor was also based on 
electrode modification techniques. In this case, single-walled carbon 
nanotubes (SWCNTs) and polypyrrole nanocomposites were used on 
a graphite sheet substrate to enhance bioreceptor immobilization 
performance [31]. To our knowledge, although microfluidic 
electrochemical platforms (µPADs) or colorimetric paper-based 
sensors have been developed for miRNA detection, [26-33] none 
of them have been designed as biomarkers of neurodegenerative 
diseases.

All the platforms mentioned before could be capable of giving 
quick answers to patients, reducing the time gap between diagnosis/
treatment and disease onset. Currently, the main limitation is the lack 
of validation with real samples since most of them were tested in 
buffer of artificial spiked samples. 
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Conclusion
Currently, there is an urgent demand for new diagnostic tools 

for point-of-care applications. Moreover, the early detection of 
neurodegenerative diseases such as Alzheimer’s and Parkinson’s, 
among others, may reduce the devastating effects on families and 
patients, including increasing their quality of life and extending their 
life expectancy. Such diseases are often detected in the last stages, 
when visual and evident cognitive effects are observed. However, some 
biochemical changes and protein expression in the patients may be 
detected approximately 10-15 years before the first symptoms of the 
disease appear. The development of novel point-of-care tests for early 
diagnosis needs a multidisciplinary approach where several elements 
are necessary: biomarkers, sample matrix, readout systems, isolation 
and amplification strategies, clinical studies, etc. Here, we showed 
the importance of microRNAs and their potential application in the 
early diagnosis of certain neurodegenerative diseases. Moreover, the 
use of electrochemical biosensors and biosensors may be a useful 
tool due to their advantages (low cost, miniaturization, user-friendly 
instrumentation). Finally, more relevant studies combining different 
electrochemical strategies, such as those used on magnetic beads and 
amplification and labeling techniques, were presented.
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