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ABSTRACT

Infection with high-risk Human Papillomavirus (HR-HPV) is the main factor to prime cervical cancer 
(CC). Currently, the primary prevention of CC through prophylactic vaccines allows protection against 
the main oncogenic genotypes of HR-HPVs and could supposed to be the most effective solution in 
underdeveloped countries. However, its effectiveness in protecting women over 35 years of age against a 
primary infection, or reinfections, is unclear, and no significant therapeutic effects have been observed on 
the available prophylactic vaccines to clear existing infections or cervical lesions. Therefore, the design of 
therapeutic vaccines, capable of eliminating infected cells, is imperative. The present review is focused on 
the current panorama of HPV therapeutic vaccination as a secondary prevention approach. 
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Introduction
In 2020, cervical cancer (CC) was positioned as the third cause 

of cancer death in women worldwide [1]. Currently, it is possible to 
count on prophylactic vaccination as primary prevention of CC, and 
screening and treating cervical lesions as secondary prevention 
methods. To date, there are three prophylactic vaccines on the market 

to prevent infection with high-risk HPVs, all of them designed from 
a multiple combination of subtypes of the L1 recombinant protein, 
which spontaneously produces highly immunogenic VLPs which will 
produce high titers of neutralizing antibodies. Unfortunately, there is 
a large number of women on productive age for whom the protection 
of prophylactic vaccines is not clear, or whether they can clear previ-
ous infections.  
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Therapeutic Vaccines as Secondary Prevention of CC 
Basically, the mechanism of preventive vaccines consists of the 

production of neutralizing antibodies. However, when patients be-
come infected, preventive vaccines are not capable of eliminating 
infection, and when the virus genome is integrated into the host ge-
nome during infection, there is an infection that evolves towards a 
nonproductive phase (it does not produce viruses). Furthermore, 
HPV’s early genes such as E1, E2, E4, E5; and late genes (L1 and L2) 
are missing in the nonproductive phase, so preventive vaccines are 
ineffective against many HPV-related cancer. 

Therapeutic vaccines currently in development are based on four 
main strategies: 

1.	 Vaccines based on live vectors, 

2.	 Vaccines based on peptides and proteins,

3.	 Vaccines based on nucleic acids, and 

4.	 Whole-cell vaccines. 

The objective of each of the four strategies is to deliver target im-
munogens to the antigen-presenting cells (APCs), to activate CD8+ T 
lymphocytes responses subsequently, specific cytotoxic T lympho-
cytes (CTL), as well as CD4+ helper T lymphocytes (Th) [2]. 

The oncoprotein E6 and E7 are the most important transforma-
tion proteins for HPV. They are necessary for the formation, main-
tenance, and promotion of cervical tumors [3]. However, E6 and E7 
expressions are not consistent throughout cervical cancer generation 
and are usually elevated only in high-grade lesion; therefore, other 
targets such as E2 protein (negative regulator of E6 and E7) may also 
be relevant, especially in pre-cancer lesions and condylomata acum-
inata [4]. 

Vaccines Based on Live Vectors  

Vaccines based on live vectors are classified into two categories, 
bacterial and viral. Such vaccines utilize selective vectors that encode 
for E6 or E7 specific antigens, reproduce in host cells, and eventually 
induce immune responses to HPV [5]. Vaccines based on living miti-
gation vectors usually have a high degree of humor and cell immunity 
and may be risky in low-immune patients [6]. Another possible risk 
of a living vector is that the immune response to the vector is stronger 
than that of the coding antigen [7]. 

Vaccines Based on Bacterial Vectors: This strategy is based 
on bacterial vectors such as Listeria monocytogenes, Salmonella sp 
(SE), or Lactobacillus casei; however, the development of such vac-
cines was limited by safety and efnicacy problems. ADXS11-001 is a 
live vaccine which is based on Listeria monocytogenes. The antigen is 
integrated of HPV16E7 fused with LLO toxin fragments, and the nirst 
clinical study on patients was carried out in 2009 [8]. Listeria mono-

cytogenes is an intracellular gram-positive bacterial that interacts 
with host cell receptor proteins and enters the cell via phagosomes, 
but distinguishes itself from other bacteria by using LLO toxins and 
PLC to escape from the cell. Phageosomes [9,10]. To manage Listeria 
monocytogenes, the MHC is activated trough two pathways in adap-
tive response; first, for bacteria that couldn’t escape from phages, the 
MHC Class II pathway stimulates CD4+ T responses, and second, for 
bacteria that could escape from phages, the MHC Class I pathway ex-
tracts the polypeptides from bacterial antigens and presents them to 
host-cell surface to activate the CD8+ T activity [11]. 

In the Phase II clinical trial that evaluated the safety-efficacy of 
ADXS11-001 vaccine in patients with recurrence/refractory cervi-
cal cancer following chemotherapy and/or radiotherapy, indicating 
that monotherapy with ADXS11-001 had fewer adverse effects than 
combination therapy groups ADXS11-001 and Cisplatin. On the other 
hand, the median survival rate was comparable between the single 
therapy group and combination therapy (8.28 months for ADXS-11-
001; 5.85–10.5 months for 95% CI; 8.78 months for ADXS-11-001 + 
Cisplatin; 5.85–10.5 months for 95%; 7.4-13.3 months for 75%). The 
overall survival rate of the two groups was 34.9% (38/109) in 12 
months and 24.8% (27/109) in 18 months. This is such a promising 
result that requires further research [12]. 

The oral vaccine GLBL101c is produced in recombinant Lactoba-
cillus casei, which expresses a mutated HPV16 E7 protein. In a Phase 
I/IIa clinical trial which showed that oral GLBL101c vaccines may 
cause a regressive CN3 associated with HPV-16, and after 9 weeks 
of treatment, the CN3 to CN2 regression rate was around 80% [13]. 
Recent studies investigating the effectiveness and adverse reactions 
of GLBL101c vaccines in patients with inflammatory disease 2 have 
shown no severe adverse reactions. The effective CR rate of GLBL101c 
was 22%, which means that the effectiveness of the medicine is not 
ideal and may require the development of new approaches [14]. 

Vaccines Based on Viral Vectors: Replication-deficient viral vec-
tors are very useful vectors for vaccine design. Main viral vectors in-
clude lentivirus, adenovirus (Ad), adeno-associated virus, alphavirus, 
and vaccinia virus [15-18]. Adenovirus-based technology is the most 
advanced recombinant vaccine technology due to its ability to induce 
a strong systemic T cell response and a high serum antibody titer after 
intramuscular application [19]. As a vaccine vector, Ad5 is the most 
widely used human serotype; However, vector technology based on 
multiple serotypes has also achieved good results in the experimental 
design of vaccines for various diseases [20]. 

Preclinical studies of recombinant vaccines in Ad26 and Ad35 
that lack replication due to E1/E3 deletion suggest that fusion pro-
teins containing HPV16’s E6/E7 oncoproteins can cause strong 
CD8+T cell response. Specific to E6/E7, and injected into the muscle 
and/or vagina, it also secretes multifunctional cytokines. However, 
although the vaccine generates strong CD8+T responses, the specif-
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ic CD4+T response cannot be detected by this strategy [21]. In the 
Ad26 and Ad35, another preclinical design is to use fusion antigens 
for the E2/E6/E7 HPVs 16-18. The design is aimed at treating all 
stages of cervical cancer and to achieve this, the antigen consists of 
three E6 oncoprotein segments and two E7 segments fused with E2. 
HPV16/18’s fusion antigens are as follows: HPV16E2SH: E2+E61-
44+E735-98+E692-157+E71-59+E621-115 and HPV18E2SH: 
E2+E61-39+E724-104+E680-156+E71-45+E615-103) [22]. In this 
preclinical study, promising results have been obtained both in mice’s 
immunogenicity and in TC-1 tumor models. 

Vaccinia virus is a large, stable dsDNA virus that can be used to 
express many antigens and is also a good immunological carrier [23]. 
TA-HPV is a vaccine that is a recombinant vaccine produced by Vac-
cinia virus and expresses E6 and E7 oncoproteins of HPV16/18 ge-
netics. In a first- to second-stage clinical study in 8 advanced cervical 
cancer patients, three patients found specific antibody responses to 
HPV, of which one patient had specific immune T-cell responses to 
HPV. In the latter, combined therapy with TA-HPV + cisplatin boosted 
the response of specific CD8+T cells to E7 [24]. 

The recombinant vaccine MVA-E2 from vaccinia expresses the 
E2 protein derived from bovine. As an inhibitor of E6/E7-expression, 
the E2 protein is introduced into hosts cells to inhibit the expression 
activity of E6 and E7, eventually leading to a reduction in cell immor-
talization/transformation. The MVA-E2 strategy has been shown to 
prevent human tumor growth in mice, and tumor regression in xeno-
transplanted rabbits. MVA-E2 was also tested in intraepithelial angio-
genesis injuries caused by HPV. In a phase III clinical trial conducted 
in 2014, 1356 patients (males and females) were involved; MVA-E2 
was 90% effective in treating CIN injuries (interestingly, all men 
showed complete lesion eradication) [25].  

The TG4001 is also a vaccine that expresses an HPV16-E6/E7 fu-
sion antigen, and in CIN-2/3 clinical trials, the HPV16 mRNA elimi-
nation was associated with lymphatic regression in 70% of CIN pa-
tients [26]. These promising data justify further trials of TG4001 for 
CIN-2/3 treatment. Vvax001, a novel beta virus-based cancer vaccine 
expressing HPV16-E6/E7 antigen also demonstrated that a single in-
jection can induce CD4+ and CD8+ T cells against E6 and E7 native 
antigens [27]. Replicable viral vector vaccines are also promising for 
treating HPV-associated cancers such as foam viruses (FVs). Replica-
tion-resistant FVs can trigger immune signals and integrate them into 
the host genome, producing continued antigen expression and robust 
immune responses. An interesting study found that animal foam virus 
protein (FFV) is a scaffold for in vitro delivery of B and T cell epitopes, 
and mice that are immunized with T cell epitope peptide E749-57 
from E7-HPV16 and attached to their expression vector protect mice 
from transformed HPV16 tumor cells [28]. 

Vaccines Based on Peptides or Proteins 

These vaccines include antigens in the form of peptides or entire 
proteins acquired by the dendritic cells (DC),  processed,  and pre-

sented to activate the MHC I or II molecular pathways to stimulate 
CD8+T or CD4+T cells [6]. Peptide vaccines are divided into synthet-
ic long-chain peptides (SLPs) and specific epitopes (short) peptides. 
Short peptides are MHCspecific and must be consistent with specific 
human leukocyte antigens (HLAs), whereas long peptide and entire 
proteins are rich in CD4+T and CD8+T cell epitopes, which can avoid 
MHC restriction limitations. Although protein and peptide vaccines 
are safe and stable, the lack of immunity of protein vaccines is a sig-
nificant limitation in their development, with a focus on the MHC II 
presentation pathway resulting in a weaker CTL immunity. Improve-
ments in protein vaccines can be achieved by adding immunostimu-
latory molecules to increase endogenous processing to improve the 
MHC I response [29]. 

ISA 101 is SLP HPV16-derived vaccine from nine SLP E6 over-
lapping sequences, and four SLP E7 overlapping sequences, [30]. In 
Phase II ISA 101 trails combined with nivolumab, an anti-PD-1 anti-
body, and evaluated in patients with untreated HPV16-positive cancer 
[31]. Compared to PD-1 antibody alone, the overall response rate was 
33%, with an average survival of 17.5%, suggesting further research. 
Another clinical study with advanced, recurrent or metastatic cer-
vical cancer receiving ISA101 vaccines and standard chemotherapy, 
including carboplatin and paclitaxel, found that in 43% percent of 
patients were able to respond to T cells of type 1 vaccines, suggest-
ing that chemotherapy can be used to treat advanced cancer patients 
effectively [32]. 

In a mouse model, mHSP110 was used as an immune antagonist 
to enhance the immune response to CTL epitopes produced by HPV16 
E7 [33,34]. HSP110 has a high affinity for protein binding and can im-
prove the immuneness of protein antibodies. They used mHSP110-E7 
as a fusion protein to prove that mHSP110 formed a complex with E7 
oncoprotein [33-36]. Then, immunizing mice leads to a strong CTL 
reaction, protects mice from tumor attacks, significantly suppresses 
tumor growth in antitumor tests, and extends the life of animals car-
rying tumors [37]. 

Fibronectin Additional Domain A (EDA) is a protein agonist simi-
lar to the toll TLR-4 that targets antigens to DCs in vivo, induces mat-
uration by binding to TLR4, and better delivers the short peptides 
treated to the naive T cells [38]. A combination of E7 proteins derived 
from HPV16/18 and the extra domain A of human fibronectin (hEDA) 
are combined into a bivalent recombinant protein, combined with the 
auxiliary poly-IC (polyinosinic-polycytidyl acid) and poly-ICLC (syn-
thetic compounds of carboxymethylcellulose, polyinosinicpolycytidyl 
acid, and poly-L-lysine double-stranded RNA) to assess the effect, im-
mune activity, and potential therapeutic activity of the HPV16 TC-1 
tumors. The results show that vaccines induced specific immune T 
lymphocyte (CTL) responses to E7 and eliminated well established tu-
mors and that when combined with adjuvants, some groups achieved 
100% immune effects [39]. This is an exciting result and also promis-
es to be a good clinical outcome.  
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Overall, the hEDA-HPVE7-16/18+Poly-ICLC is a promising reg-
imen for cancer treatment, and improving its protocol to improve 
the benefits of clinical treatment. Some improvements are also an-
alyzed, one of which is the future consideration of the effect of tu-
mor-suppressing environment on vaccine effectiveness as proposed 
in the article itself, which means establishing a place closer to tumor 
growth in an in vivo context. The second is to improve experimental 
design, combining vaccine treatment data for large tumor experimen-
tal groups and incorporating vaccine treatment levels for advanced 
patients. In addition, vaccine dosage is an essential factor in immune 
effectiveness, and high doses of vaccine injections can cause adverse 
reactions, which should be documented as they occur. 

Vaccines Based on Nucleic Acids 
DNA Vaccines  

DNA vaccines are a valuable cancer treatment method because of 
their simplicity, stability, and effective antigen-specific immunother-
apy. DNA vaccines are based on bacterial plasmids, which express 
antigens triggered by high-efficiency eukaryotic promoters, and ef-
fective DNA vaccines must enter the nucleus after injection to induce 
the expression of antigens delivered by MHC class I molecules to ac-
tivate the immune system [40,41]. Unlike living vector vaccines, DNA 
vaccines are relatively safe, produce no body-specific antibodies, and 
can be used for immunity increases by repeated vaccines [42]. The 
lack of independent amplitude of the exposed DNA leads to a poor 
body immune system, one of the main disadvantages of DNA vaccines. 
One of the main disadvantages of DNA vaccines is their low immu-
nogenicity, to enhance immunogenicity, vaccine design uses several 
methods, such as electroporation of DC cells, immunomodulators and 
distinct immunostimulators (such as entire cells and/or metabolic 
molecules) [43,44]. 

A clinical study evaluated the safety, efficacy, and immunogenicity 
of DNA vaccines for pNGVL4a-CRT/E7 vector in HPV-related infection 
[45]. DNA vaccines are composed of expression vectors of pNGVL4a 
and contain the HPV16E7 encoded sequence associated with calre-
ticulin (CRT) [46]. Patients were vaccinated by subcutaneous admin-
istration, intramuscular injection, or direct intrauterine injection. Of 
them, 69% had adverse reactions to vaccination, and 30% had vascu-
lar regression of CIN 1 or less. Similarly, the corresponding data show 
that immune solid reactions are also induced and more CD8+T lym-
phocyte responses occur [45]. 

Recent clinical trials have explored the therapeutic effects of the 
GX-188e therapeutic DNA vaccine on regressive CIN3 of the uterus 
[47]. GX-188e consists of tissue plasminogen activator signal se-
quences, tyrosine kinase 3 ligands, and recombinant HPV-16/18-E6/
E7 genes [48]. As a result, 52% of patients with V7 and 67 percent of 
patients with V8 experienced a histopathological reduction, 73 per-
cent (V7) and 77 percent (V8) of patients with a histological reduction 
showed a clearance of HPV [47]. This shows that the GX-188E vaccine 

induces strong cell immunity to eliminate the cytological lesions of 
HPV. In another AMV 002 vaccine study, the results showed that AMV 
002 vaccines were well tolerated at all doses and enhanced the spe-
cific immunity of patients treated with tumor-related antigens [49]. 

RNA Vaccines  

mRNA vaccines are currently the most popular forms of vaccines 
and have been widely proven to be a promising therapeutic strat-
egy for immunotherapy. In 1989, Malone and colleagues demon-
strated that by encapsulating cationic lipids (N-[1-(2,3dioleyloxy)
propyl]-N,N,N-trimethylammonium chloride (DOTMA)) in various 
eukaryotic cells, mRNAs can be successfully transfected and ex-
pressed [50]. In 1990, mRNA transposed in vitro was fully expressed 
in mouse skeletal muscle cells, and successful expression of mRNA 
in vitro was shown to be the first proof of the feasibility of mRNA 
vaccines [51]. The mRNA structure includes 5’cap structures, 5’ and 
3’UTR structures, code sequences and 3’poly A tails [52]. Many stud-
ies have shown that mRNA is not integrated (safe), and new genera-
tion self-amplify mRNA vaccines (saRNA vaccines) have high autono-
my replication capacity. The self-replicating viral vectors of RNA also 
have high expression rates and a natural anti-inflammatory activity, 
TLR 7/8 ligand, which induces strong immune responses [53,54]. 
Compared to DNA vaccines, the main reasons for slow development of 
mRNA vaccines are poor stability and low efficiency of delivery. Con-
sequently, mRNA is often packaged in the body by a delivery vector, 
including DC vectors, protamines, cationic lipid delivery systems, and 
polymer materials [55,56]. 

There are few reports of HPV mRNA vaccines. In a new study, 
mRNA expressing antigen HPV16E7 is encapsulated in liposome 
preparations and RNA-LPX-like molecules, resulting in immune re-
sponses in mice with strong antigen-specific effects and memory 
CD8+T cell responses [57]. With the outbreak of new coronavirus, 
research into mRNA vaccines has been pushed to a higher level and 
development prospects are also promising.  

In conclusion, nuclear acid vaccines are hardly studied in the field 
of HPV, and animal experiments yield different results. Currently, be-
cause of its safety and effectiveness, mRNA vaccines are becoming in-
creasingly popular in the case of epidemics. 

Whole Cell Vaccines 

Dendritic Cell Vaccines: Dendritic cells are the strongest and 
most effective APCs in the presence of antigens and play an important 
role in immune regulation. It has a strong ability to obtain and pro-
cess antigens to be presented in vivo and in vitro to T lymphocytes, 
and many evidence has confirmed that DCs derived from monocytes 
can stimulate nervous CD4+ T lymphocytes and CD8+ T lymphocytes 
in vitro and in vitro [58,59]. Furthermore, DC is also a natural adju-
vant to increase vaccine immunogenicity [60]. There are two meth-
ods of producing HPV vaccines with DC as the core. One of these is 
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to cultivate DCs in vitro and then stimulate DCs with HPV E6/E7 an-
tigens. Another is DC’s stability transposition in vitro with vectors 
expressing HPV antigens and then DC’s adoption to patient transmis-
sion, presenting the antigen to nave T cells, resulting in CTL responses 
[61,62]. The application of receptor antagonists similar to TOLL to 
promote the maturation of DC is also widely used in the treatment of 
DC vaccines. Toll-like receptors (TLRs) are part of the DC cell pattern 
recognition receptor, while the DC cell pattern recognition receptors 
also have C-type lectin receptors (CLRs), NLRs, and RLRs that induce 
genes such as receptors (RLRs) associated with nucleic acid binding 
(NLRs), and TLR ligands induce DC cell phenotypes and functional 
maturation, regulate cell metabolism, and lifespan [63,64]. 

In patients with stage IB or IIA cervical cancer, the safety and im-
munogenicity of HPV16/18E7 antibodies and keyhole hemocyanin 
pulsed mature neurocytic cells (DCs) were assessed [65]. Three doses 
(low, medium, high) are injected every 21 days (total 5 times). Pa-
tients receiving DC vaccines showed good tolerance, without signif-
icant toxic or side effects, and significantly increased the expression 
of CD4+T specific to E7 and KLH after vaccination. Camelid-derived 
monodomain antibody fragments (nanobodies or VHHs) recognize 
the surface proteins of the cell on the antigen-presenting cells (APCs) 
and can act as a target delivery vehicle for antigens associated with 
them. A study aimed at VHH+CD11bE749-57 cells in DC2.4 cells, and 
mice vaccinations produced more CD8-tumor-infiltrating lympho-
cytes in HPV mice [66]. 

DC vaccines also have limitations. First, because the prepara-
tion technology is limited, the quantity and quality of the extracted 
DC cannot be guaranteed. On the other hand, large-scale production 
is difficult, and different processes can lead to inconsistent vaccine 
quality. As a result, there are still many obstacles to the development 
of DC vaccines. 

Tumor Vaccines: Each cancer has a large number of potential tu-
mor antigens, so the best strategy is to immunize entire tumor cells to 
include all potential antigens. Furthermore, the vaccine approach cir-
cumvents the limitations of the major inflammatory complex (MCH) 
and does not require epitope identification on a patient’s request 
[67]. The effectiveness of this method has been evaluated over the 
years in clinical trials on different tumors such as lung cancer, col-
orectal cancer, renal cell cancer, and prostate cancer. Because HPV 
is a wellknown tumor-specific antigen, cellular-based tumor-based 
vaccines are not the most practical immune therapy for HPV-related 
cancer, and few studies have been conducted to evaluate the real ef-
fectiveness of this type of vaccine for HPV-related cancers. 

Conclusion
The disease caused by HPV infections has always attracted the 

attention of the human eye and is the necessary factor for cervical 
cancer (100%). Vaccines currently play an essential and effective role 
in the prevention and treatment of cervical cancer. Over the past 20 

years, vaccine research has developed rapidly, and the issuance of bi-
valent, quadrivalent, and nonvalent vaccines has effectively prevent-
ed 90% of HPV infections worldwide. However, new preventive vac-
cine research has never stopped, such as the study of new expression 
systems (e.g., E. coli) to reduce vaccine costs and the development of 
broad-spectrum L2 vaccines for simplicity and efficiency. In the treat-
ment of cervical cancer, surgery is currently the main treatment and a 
therapeutic vaccine is not approved for marketing. The development 
of therapeutic vaccines is promising, with most vaccines based on E6/
E7 tumor protein being developed to induce strong cell immunity and 
the hope of eradicating HPV-related diseases and malignant diseases. 
Vaccines are generally effective in preclinical studies, but not in clin-
ical trials. In addition, the effectiveness of vaccines will be improved 
by exploring more in situ tumor models, combined therapy, and the 
design of new antigen targets (e.g. E1 and E5). We hope that a thera-
peutic vaccine will soon be available. 
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