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ABSTRACT

Early detection in diagnosing brain diseases is crucial for proper disease treatment measures. The use 
of Artificial Intelligence/Machine Learning has contributed to the classification of diseases through 
medical images. Algorithms, models, and increasingly powerful techniques have emerged to assist 
physicians in this decision-making process. This research proposes to classify medical images using pre-
trained neural networks. The VGG16 model outperformed the other studied models, including VGG19, 
InceptionResNetV2, and InceptionV3. Models were evaluated by brain disease class, which included no-
tumor, pituitary, glioma, and meningioma. The metrics used to evaluate the models included accuracy, 
precision, sensitivity, and specificity, all registering values above 95%. Furthermore, the Diagnostic Odds 
Ratio was above 473.00, indicating excellent responses based on the medical images. Overall, the results 
suggest that Artificial Intelligence techniques have made significant contributions to the early diagnosis 
of brain tumors.
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Introduction
Brain tumor cases increased significantly globally between 2004 

and 2020 from nearly 10% to 15% [1]. The early detection and diag-
nosis of brain tumors are crucial for taking appropriate preventive 
measures, as is the case with most cancers [2]. Recent advancements 
in using artificial intelligence resources for diagnosis using medical 
images have greatly facilitated image classification. Javaria Amin, et 
al. [3] describe and present results of several scientific methods to 
detect and classify brain tumors using traditional techniques such 
as thresholding and growth variations in the region of interest. Ad-
ditionally, the use of data extraction techniques from 2D/3D medical 
images of human tissues suspected of tumors and the use of Artificial 
Intelligence/Machine Learning techniques are efficient for the detec-
tion of these tumors through the analysis of these images. In the era of 

molecular therapies, diagnostic neuroimaging should guide the diag-
nosis and treatment planning of brain tumors through a non-invasive 
characterization of the lesion, sometimes also called “virtual biopsy”, 
based on radiomic and radiogenomic approaches [4,5]. The tumor is 
an exceptional expansion generated by human cells that reproduce 
abnormally. Identifying brain tumors is crucial, and changes in tissue 
color and texture can help with their diagnosis from images. Texture, 
which includes attributes like brightness, color, and size, can be par-
titioned into sub-images for analysis. This analysis can provide valu-
able insights into classifying the tumors and extracting vital informa-
tion from the images [6]. Additionally, intrinsic image alterations like 
brightness and color can aid texture analysis and further differentiate 
the images. A sample of the images is displayed in Figure 1.
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Figure 1: Images in the exist plane of the diseases considered in this study, are represented by four classes.

Materials and Methods
The studied models are known in the academic literature and are 

part of the set of discriminative models. Deep learning algorithms ap-
plied in computer vision, and when used in medical images, take this 
technology to a sophisticated level of feature extraction to the point of 
classifying diseases through these images. The Artificial Intelligence/
Machine Learning tools used in this study are Convolutional Neural 
Networks [7], where a L-layer neural network is a mathematical func-
tion S, called feature map, which is a composition of multivariate func-
tions: f1,1, ..., fi,j, ..., fn,L , and Ki,j, is defined as:

: .n ps R R→
( ) , , 1,1,

... , 1, 2,... ; 1, 2,... .i j i ji j
S X K f f i n j L= = =    (1)

where,

•	 n is the dimension of the input x.

•	 p is the dimension of the output of the last layer.

•	 L is the number of layers.

•	 K is the filter or kernel function.

•	 each function ,i jf is itself a composed multivariate function 
,( ) ( ),ij i j zf x w x bϕ= + where (.)ϕ  is the activation function, w rep-

resents the weights, and b is the bias. 

The models studied follow the basic configuration of the graphi-
cal representation which is shown in Figure 2. 

Figure 2: Graphical representation of neural network.
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The feature map in discrete form ,i jS  is expressed by Equation 2:

1 1
, , , ( 1), ( 1)0 0

( ) .N M
i j i j m n i m M j n Nn m

S K I K I− −

+ − − + − −= =
= ∗ =∑ ∑ �  (2)

where, M is the kernel dimension.

Equation 3 shows the 2D layer of a Convolutional Neural Network.
( 1) ( ) ( ) ( ) ( ) ( )
, , , , , /2, /2( ) ( ).l l l l l l l

z i j z z i j z m n i m M j n N zm n
h W F b w f bϕ ϕ+

+ − + −= ∗ + = +∑ ∑ �  (3)

where, z is the kernel filter order.

The models taken into consideration in this study have structures 
based on the configuration shown in Figure 2, whose composition 
and order of layers for each model are shown in subsection Proposed 
Strategy and have layers with the following characteristics:

•	 2D Convolutional filter;

•	 Batch Normalization;

•	 ReLu;

•	 Full Connected;

•	 Average Pooling;

•	 Max Pooling;

•	 Dropout;

•	 Softmax.

Proposed Strategy
Our research proposes a combination of methods and techniques 

that can achieve great results in image classification. Through these 
techniques, we can identify and distinguish various human tissue 
structures to detect different diseases. Data were collected from an 
online source available on the kaggle.com platform [8], where the 
data set was processed, which was divided into two groups: 66.66% 
for training and 33.37% for validation. Four different types of brain 
imaging were classified: no-tumor, pituitary tumors, glioma tu-
mors, and meningioma tumors. This research utilized a dataset of 
600 brain tumor images for multiclass classification. For each of the 

simulated models, the input images for the convolutional layer are 
fixed-size 3x128x128 RGB images, resized from original brain im-
ages in 600-pixels jpeg format, [8]. The randomly selected images 
were passed through a stack of convolutional layers with the most 
diverse functions for feature extraction. The architectures were mod-
eled using the Python language with the Keras and Tensor-Flow li-
braries in Python environment. The experimental design took into 
account the following parameters and simulation settings to facilitate 
the extraction of features from each image: the data augmentation 
method was applied to increase the brightness and contrast of the 
images. The optimized used was the ADAM algorithm, with a learning 
rate of 0.0001, and the loss function used was the “sparse categorical 
cross-entropy”, this metric uses two local variables, total and count 
that are used to calculate the frequency with which ypred corre-
sponds to ytrue, used for model training.

One of the methods applied was the transfer of learning [9], which 
transfers the optimized weights of the original neural networks to the 
new model structure. This approach, as explained by Peirelinck, et 
al. [10], is a powerful tool for achieving accurate image classification. 
The results plotted in Figure 3 show the difference with transfer and 
without transfer learning and the impact on the models’ performance. 
This research proposes the extraction of features from medical im-
ages of brain diseases, from a pre-processing of the images, and in 
the sequence of the training phase. The trained model was submitted 
to the testing phase when the results of the metrics by class or type 
of disease were obtained. The layer diagram of models VGG16 and 
VGG19, as shown on Figure 4. Models VGG16 and VGG16 have similar 
structures, where each block is composed of 2D Convolution and Max 
Pooling layers, with 16 and 19 layers, respectively. Figure 5 presents 
the InceptionResV2 and InceptionV3 models. InceptionV3 is an image 
recognition model that achieves over 78.1% accuracy on the ImageN-
et dataset. This model is the culmination of many ideas developed by 
several researchers over the years. It is based on the original paper 
“Rethinking the Inception Architecture for Computer Vision” [11]. 
The steps of the Inception process are convolution, pooling, dropout, 
fully connected, and softmax [12,13].

http://dx.doi.org/10.26717/BJSTR.2023.53.008450
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Figure 4: Structure of the evaJuated models VGG16 and VGG19.

Figure 3: Rationale for transfer learning in supervised. Source: Peirelinck [10].
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Figure 5: Layer composition of the evaluated InceptionResV2 and InceptionV3 models.

Metrics for Evaluating Models
The studied models were evaluated using the following set of 

metrics:

•	 TP = True Positive;

•	 FP = False Positive;

•	 TN = True Negative;

•	 FN = False Negative;

•	 P = Total Positive;

•	 N = Total Negative,

where,

.P TP FN= +  (4)

.N FP TN= +  (5)

where P and N indicate the number of positive and negative sam-
ples, respectively.

1)	 Accuracy and error rate Accuracy (Acc) is one of the most 
commonly used measures for classification performance, and it is de-

fined as a ratio between the correctly classified samples to the total 
number of samples as follows [14], according to Eq. 6:

.TP TNAcc
P N
+

=
+  (6)

2)	 Precision (Pre) is a metric that quantifies the number of 
correct positive predictions made. Precision, therefore, calculates 
the accuracy for the minority class. It is calculated as the ratio of 

correctly predicted positive examples divided by the total number of 
positive examples that were predicted, according to Eq. 7: 

Pr .TPe
TP FP

=
+

 (7)

3)	 Sensitivity, True Positive Rate (TPR), hit rate, or recall, of a 
classifier represents the positive correctly classified samples to the 
total number of positive samples. The sensitivity measures the capa-
bility of the diagnostic test to recognize a diseased person correctly 
[14], i.e., S+ = Pr(test positive/non−diseased) = (1 )β− , where ( )β is the 
error probability of falsely classifying a diseased person as healthy, or 
even as defined in Eq. 8:

.TPTPR
P

=  (8)
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4)	 Specificity, True Negative Rate (TNR), represents the nega-
tive correctly classified samples to the total number of negative sam-
ples. The specificity measures the capability of diagnosing a healthy 
person correctly [14], i.e., S− = Pr(test negative|non-diseased) = (1-), 
where alpha is the error probability of falsely classifying a healthy 
person as diseased, or even as defined in Eq. 9:

.TNTNR
N

=  (9)

In some situations, sensitivity has precedence over specificity, for 
instance, to assess the clinical utility of prognostic biomarkers in can-
cer [15].

5)	 F1-Score or F1 measure is a performance metric that rep-
resents the harmonic mean of precision and recall as in Eq. 10 [16,17]. 
The value of the F1-measure is ranged from zero to one, and high val-
ues of the F1-measure indicate high classification performance. F1 
Score is the Harmonic Mean between precision and recall and the 
Precision is the proportion of true positives among instances classi-
fied as positive, e.g. the proportion of melanoma correctly identified 
as melanoma. Recall is the proportion of true positives among all pos-
itive instances in the data, e.g. the number of sick among all diagnosed 
as sick.

1 2 ( Re ) / (Pr Re ).F score Precision call ecision call− = ∗ ∗ +  (10)

6)	 Matthews Correlation Coefficient (MCC) represents the cor-
relation between the observed and predicted classifications [16,18], 
and it is calculated directly from the confusion matrix as in disagree-
ment between prediction and true values and zero means that no bet-
ter than Eq. 11:

.
( ) ( ) ( ) ( )

TP TN FP FNMCC
TP FP TP FN TN FP TN FN

× − ×
=

+ × + × + × +  (11)

A coefficient of +1 indicates a perfect prediction, −1 represents to-
tal disagreement between prediction and true values and zero means 
that no better than random prediction.

7)	 Cohen’s Kappa measures the agreement between two raters 
who classify N items into C mutually exclusive categories [19], accord-
ing to Eq. 12:

.
1

o e

e

p pk
p
−

=
−  (12)

where op is the observed relative agreement between raters and 
ep is the hypothetical chance of agreement by chance, using the ob-

served data to calculate the odds of each observer randomly viewing 
each category. Cohen’s kappa is a robust statistic useful for either in-
terrater or intrarater reliability testing.

8)	 Positive Likelihood Ratio (LR)+ combines both sensitivity 
and specificity, and it is used in diagnostic tests [14]. Positive like-
lihood - LR+ measures how much the odds of the disease increase 
when a diagnostic test is positive and it is calculated as in Eq. 13:

 1
TPRLR
TNR

+ =
′−  

(13)

9)	 Negative Likelihood Ratio (LR)− combines both sensitivity 
and specificity, and it is used in diagnostic tests [14]. Negative like-
lihood - LR− measures how much the odds of the disease decrease 
when a diagnostic test is negative and it is calculated as in Eq. 14:

 1
TPRLR
TNR

− =
′−  (14)

10)	 Diagnostic Odds Ratio (DOR) has been suggested and uti-
lized frequently in the literature. The diagnostic odds ratio as a single 
indicator of diagnostic performance, as proposed and recommended 
for example by Glas, et al. [15], and is defined as Eq. 15. The value of a 
DOR ranges from 0 to infinity, with higher values indicating better dis-
criminatory test performance. A value of 1 means that a test does not 
discriminate between patients with the disorder and those without it.

 
.

1 1
s sDOR X

s s

+ −

+ −=
− −  

(15)

In fact, the original paper by Glas, et al. [20], suggested the DOR 
as a single indicator of test performance to facilitate the formal me-
ta-analysis of studies on diagnostic test performance.

11)	 Confusion Matrix (CM) is a fundamental tool in machine 
learning and statistics that is used to evaluate the performance of a 
classification algorithm. It provides a visual representation of the per-
formance of a classification model by summarizing the predictions it 
has made on a dataset and comparing them to the actual known la-
bels. The confusion matrix is particularly useful when dealing with 
binary classification problems (two classes) but can also be extended 
to multiclass classification problems. The confusion matrix provides 
a comprehensive overview of the model’s performance, allowing for 
deeper insights into its strengths and weaknesses.

12)	 Receiver Operating Characteristics (ROC) curve is a two-di-
mensional graph in which the TPR represents the y-axis and FPR is 
the x-axis. The ROC curve has been used to evaluate many systems 
such as diagnostic systems, medical decision-making systems, and 
machine learning systems [16]. It is used to make a balance between 
the benefits, i.e., true positives, and costs, i.e., false positives, as shown 
in Figure 6.
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Figure 6: A basic ROC curve showing important points, and the optimistic, pessimistic, and expected ROC segments for equally scored samples. 
Source: Tharwat, A. [16].

Results and Discussions
It can be observed that for each model, certain types of disease 

are more easily identified than others, this is justified by the fact that 
some of the studied models manage to extract more characteristics 

from others. In the simulation of the studied models, pre-trained and 
trainable parameters were used, according to Table 1. These CNNs 
have been trained on the ILSVRC-2012-CLS image classification data-
set [21].

Table 1: Number of parameters of the studied models.
Models VGG16 VGG19 InceptionResnetV2 InceptionV3

Trainable parameters 8,128,644 8,128,644 3,983,492 1,049,220

Non-trainable parameters 7,635,264 12,944,960 51,140,320 21,802,784

Total parameters 15,763,908 21,073,604 55,123,812 22,852,004

VGG16 Model Evaluation
Among the analyzed models, the VGG16 model is one of the mod-

els that have fewer parameters to be trained, however, the model pres-
ents good results shown in Table 2. This model shows greater ease in 
identifying the image of a pituitary, with an accuracy of 95.50%, and 
a diagnostic odds ratio (DOR) of 462.00, as well as, notumor with an 
accuracy of 94.50% and a DOR of 268.66. However, it presents some 
difficulty in identifying the disease meningioma with an accuracy of 
88.00%, a Mattheus Correlation Coefficient of 59.35%, and a DOR of 
25.33. Mahmud, et al. [1] worked with a data set that was divided into 

three groups: 80% for training, 10% for testing, and 10% for vali-
dation. It validated four different types of brain imaging: glioma tu-
mors, meningioma tumors, no-tumor, and pituitary tumors, in a total 
of 3,264 images. Found for the VGG16 model an accuracy of 71.60%. 
Figure 7 shows for each class the number of test images that were 
correctly and erroneously predicted through the confusion matrix. It 
is observed that the VGG16 model classifies pituitary disease more 
easily. The ROC curve confirms in the binary classification that the 
pituitary instance is the most prevalent with an AUC of 96%, and the 
lowest is the meningioma with an AUC of 80%, as shown in Figure 8.

http://dx.doi.org/10.26717/BJSTR.2023.53.008450
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Table 2: Results of the VGG16 model.
Metrics notumor pituitary glioma meningioma

1. Accuracy 0 9450 0 9550 0 9100 0 8800

2. Precision 0.9612 0.9866 0.9241 0.9268

3. Sensitivity/Recall 0.9538 0.9545 0.9605 0.9268

4. Specificity: 0.9286 0.9565 0.7600 0.fififi7

5. F1 score: 0.9575 0.9703 0.9419 0.9268

6. Matthews Correlation Coefficient (MCC) 0.8796 0.8795 0.7450 0.5935

7. Cohen’s Kappa 0.8795 0.8776 0.7423 0.5935

8. Positive likelihood ratio (LR+) 13.354 21.954 3.8421 2.7805

9. Negative likelihood ratio (LR—) 0.0497 0.0475 0.0526 0.1098

10. Diagnostic odds ratio (DOR) 268.66 462.00 73.00 25.33

Figure 7: Confusion Matrix - validation of the VGG16 model.

Figure 8: ROC’ curve - validation of the VGG16 modeJ.

http://dx.doi.org/10.26717/BJSTR.2023.53.008450
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VGG19 Model Evaluation
For the pre-trained model VGG19, the best classification was with 

no tumor images, with an accuracy of 93.50%, precision of 95.65%, 
and a DOR of 172.86. Table 3 shows these results. The results pre-

sented in Table 3 for the VGG19 model are generally lower than the 
results for the VGG16 model shown in Table 2. Using the aggregation 
technique of robust CNN, Anaya Isaza, et al. [2] obtained image classi-
fication results with the VGG19 model, an accuracy of 76.76%, with a 
precision of 89.29% (Figure 9).

Table 3: Results of the VG G19 model.
Metrics notumor pituitary glioma meningioma

1. Accuracy 0.9350 0.9150 0 8800 0 7800

2. Precision 0.9565 0.9793 0.9262 0.8274

3. Sensitivity/Recall 0.9496 0.9103 0.9139 0.9026

4. Specificity: 0.9016 0.9318 0.7751 0.3696

5. F1 score: 0.9531 0.9435 0.9200 0.8634

6. Matthews Correlation Coefficient (MCC) 0.8474 0.7812 0.6803 0.3124

7. Cohen’s Kappa 0.8474 0.7727 0.6800 0.3047

8. Positive likelihood ratio (LR+) 9.6547 13.350 4.0710 1.4317

9. Negative likelihood ratio (LR—) 0.0559 0.0963 0.1110 0.2636

10. Diagnostic odds ratio (DOR) 172.86 138.62 36.67 05.43

Figure 9: Confusion Matrix - validation of the VGG19 model.

InceptionResNetV2 Model Evaluation
The InceptionResNetV2 model did not show a good response in 

the diagnostic identification of the images considered in this study, 
due to the results of the metrics presented in Table 4. The Inception-
ResNetV2 model presents the best classification for non-tumor im-
ages, with an accuracy of 93.50%. Obtaining accuracy and precision 

values of 96.78% and 97.67%, respectively, with the InceptionRes-
NetV2 model, Gómez Guzmán, et al. [22] reached a great level in the 
validation metrics of this model. The InceptionResNetV2 model pres-
ents a good response in the identification of meningioma diagnostic 
imaging, better than the VGG19 and InceptionV3 models, with an AUC 
of 76% as shown in Figures 10 & 11.

http://dx.doi.org/10.26717/BJSTR.2023.53.008450
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Table 4: Results of the InceptionResNet V2 model.
Metrics notumor pituitary glioma meningioma

1. Accuracy 0 9350 0 9150 0 8450 0.8450

2. Precision 0.9521 0.9671 0.9220 0.8571

3. Sensitivity/Recall 0.9586 0.9245 0.8667 0.9452

4. Specificity: 0.8727 0.8780 0.7800 0.5741

5. F1 score: 0.9553 0.9453 0.8935 0.8990

6. Matthews Correlation Coefficient (MCC) 0.8361 0.7.586 0.6140 0.5819

7. Cohen’s Kappa 0.8361 0.7548 0.6100 0.5691

8. Positive likelihood ratio (LR+) 7.5320 7.5811 3.9394 2.2192

9. Negative likelihood ratio (LR—) 0.0447 0.0860 0.1709 0.0954

10. Diagnostic odds ratio (DOR) 158.86 88.20 23.04 23.25

Figure 10: ROC’ curve - validation of the VGG19 model.

Figure 11: Confusion Matrix - vaJidation of the InceptionResNetV2 model.
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InceptionV3 Model Evaluation
The InceptionV3 model responds well to the identification of 

non-tumor images, with an accuracy of 95.00%. Gómez Guzmán, et 
al. [22] included in their research the pre-trained model InceptionV3 
with a total of 5,712 images for training and 1,311 for testing. The 
experimental results showed an accuracy of 97.12% and a precision 
of 97.97%, obtaining excellent results. The Confusion Matrix in Fig-
ure 12 shows that the InceptionV3 model has a better performance 

for non-tumor classification and a poor performance for identifying 
meningioma images. In this study, considering the test database, the 
AUC of the InceptionV3 model reached levels between 93% and 69%, 
according Figure 13. The pre-trained models InceptionResNetV2 and 
InceptionV3, in general, presented average performance, below the 
models VGG16 and VGG19. After carrying out a thorough analysis, it 
was found that the VGG16 model had the strongest overall perfor-
mance when compared to the studied models (Table 5).

Figure 13: Confusion Matrix - validation of the InceptionV3 model.

Figure 12: ROC curve - validation of the InceptionResNetV2 model.
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Table 5: Results of the Inception V3 model.
Metrics notumor pituitary glioma meningioma

1. Accuracy 0.9500 0.9000 0 8500 0 7700

2. Precision 0.9433 0.9342 0.9103 0.8609

3. Sensitivity/Recall 0.9852 0.9342 0.8987 0.8387

4. Specificity: 0.8770 0.7917 0.6667 0.5333

5. F1 score: 0.9638 0.9342 0.9045 0.8497

6. Matthews Correlation Coefficient (MCC) 0.8854 0.7259 0.5559 0.3612

7. Cohen’s Kappa 0.8832 0.7259 0.5557 0.3607

8. Positive likelihood ratio (LR+) 8.0046 4.4842 2.6962 1.7972

9. Negative likelihood ratio (LR—) 0.0169 0.0831 0.1519 0.3024

10. Diagnostic odds ratio (DOR) 473.81 53.96 17.75 05.95

Figure 14: ROC curve - validation of the JnceptionV8 model.

Conclusion
In this research, the use of models with pre-trained parameters 

is a highly effective solution, not only significantly improving the pro-
cessing response time in the classification of medical images, but also 
producing very satisfactory results. These findings suggest that the 
use of pre-trained models can be a valuable tool in the field of medical 
image analysis for the early identification of diseases. Out of the four 
models evaluated for identifying images with diseases like pituitary 
type, glioma, and meningioma, the VGG16 model stood out with the 
best performance. Based on our evaluation of four different models, 
we found that the VGG16 model performed the best in identifying im-
ages with pituitary-like disease, glioma, and meningioma. This model 

provided very good results in accuracy, precision, sensitivity/retriev-
al, specificity, and Matthews correlation coefficient. However, when it 
comes to detecting no-tumor images, the InceptionV3 model was the 
best model,

evaluated with a Matthews correlation coefficient of 88.54%, sen-
sitivity/recall of 98.52%, and diagnostic Odds Ratio of 473.81. The 
VGG16 model emerges as the second-best model to detect no-tumor 
images, but the InceptionV3 model was the absolute leader in this 
category. Based on the set of images presented, the research showed 
that meningioma is the most difficult disease to classify among the 
four studied models. Classification accuracy ranged from 77.00% to 
88.00%
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