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ABSTRACT

In this brief article, we summarize the characteristics of three approaches to factor analyzing data: exploratory 
factor analysis, confirmatory factor analysis, and exploratory structural equation modeling, and describe 
results from an empirical study that favored the use of exploratory structural equation modeling over the 
other approaches. We also direct readers to resources with computer code and further details for conducting 
the illustrated analyses.

Abbreviations: EFA: Exploratory Factor Analysis; CFI: Comparative Fit Index; TLI: Tucker-Lewis Index; 
RMSEA: Root Mean Square Error of Approximation; ESEM: Exploratory Structural Equation Modeling

An Overview of Factor Analytic Techniques
Since its inception in the early years of the 20th century (Spear-

man [1,2]), factor analysis has been used extensively in applied re-
search across numerous disciplines. The fundamental purpose of fac-
tor analysis is to establish the number and nature of latent variables 
or factors that explain associations among observed scores. A factor 
is an unobservable variable that affects more than one observed score 
and accounts for correlations among those scores. Common applica-
tions of factor analysis are to determine whether interrelationships 
among observed indicators can be accounted for by a smaller number 
of underlying latent constructs (Brown [3]), investigate convergent 
and discriminant validity for such indicators and constructs (Millon 
[4]; Van de Vijver & Leung [5]), serve as a method of data reduction 
(Cox, et al. [6]), and provide a mechanism for investigating and test-
ing theoretical models (Matsunaga [7]). Over the years, Thurstone’s 
[8] “simple structure” common factor model has attracted the most 
attention. Within this model, each observed score or indicator is 
represented by one or more common factors and an error term. The 
variability of each indicator score is divided into two parts: common 

variance shared among indicators (i.e., communality) and unique 
variance that is specific to the indicator or due to random measure-
ment error (i.e., uniqueness). The common factor model encompass-
es two primary types of factor analyses: Exploratory Factor Analysis 
(EFA) and Confirmatory Factor Analysis (CFA; Joreskog [9,10]). The 
goal of both approaches is to use a reduced number of distinguishable 
latent variables or factors to explain observed associations among the 
indicators examined (Brown [3,11]). 

Exploratory Factor Analysis (EFA)
EFA is driven by data in the sense that it does not require that the 

number of factors or the pattern of relationships among latent factors 
and indicators be explicitly specified in advance. EFA is typically used 
in preliminary research to determine the number of common factors 
needed and identify which observed scores are the best indicators of 
the latent factors in relation to factor loadings that represent the re-
lationships between observed scores and latent factors. The number 
of common factors can be determined based on a variety of methods 
(see, e.g., Brown [3,11]). Ideally, each observed score would be more 
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strongly linked to one factor than all others. However, EFA has short-
comings including its emphasis on empirical data over theoretical 
modeling and the absence of fit indices to evaluate the adequacy of 
the factor models in explaining interrelations among observed scores. 
The goal of CFA is to mitigate these drawbacks.

Confirmatory Factor Analysis (CFA)
CFA is an extensively used structural equation method for testing 

theoretical models that represent relationships between observed 
scores and latent factors. In contrast to EFA, CFA is theory-driven and 
highly restrictive in that the researcher must specify the number of 
factors and how observed indicators relate to those factors. In most 
common applications of this method, researchers allow each indica-
tor to load on one targeted latent factor but not on other factors to 
achieve the clearest simple structure. CFA is suitable for directly test-
ing theoretical models and is more parsimonious than EFA (Brown 
[3,11]).

Exploratory Structural Equation Modeling (ESEM)
ESEM is a more recent approach to factor analysis (Asparouhov 

Muthén, et al. [12-15]) intended to overcome the highly restrictive 
nature of CFAs by allowing indicators to have non-zero (i.e., weak, or 
typically negligible) loadings on non-targeted factors, while still re-
taining the advantage of CFA in directly testing prespecified theoreti-
cal models. ESEM is more data-driven than CFA by allowing indicator 
scores to load on all factors but expecting those scores to load notice-
ably higher on targeted than on non-targeted factors. Recent studies 
have revealed that, when samples are of adequate size, ESEMs pro-

duce better model fits and more precise parameter estimates than do 
CFAs (Asparouhov & Muthén [12, 16-22]).

An Empirical Example
To illustrate advantages of ESEMs, we include selected results 

from a recent dissertation study by the first author (Hong [23]) in Ta-
ble 1. The data reported represent responses from 447,500 residents 
in the United States (39% male, 61% female; mean age = 24.93), who 
completed the International Personality Item Pool NEO 120 ques-
tionnaire (IPIP-NEO-120) that we obtained from a publicly accessi-
ble university website (https://osf.io/tbmh5/) created to enhance 
research into personality-related constructs (Johnson [24]). The 
IPIP-NEO-120 has 120 items that measure the Big Five personality 
domain constructs: Agreeableness, Conscientiousness, Extraversion, 
Neuroticism, and Openness to Experience. Each domain scale has 24 
items with six nested 4-item facet subscales (see the note to Table 1 
for names of all facets within each domain). We conducted separate 
correlated multifactor CFA and ESEM analyses for each personality 
domain with factors corresponding to the six facets included within a 
given domain. In Table 1, we report three model fit statistics for each 
analysis. These include the Comparative Fit Index (CFI), Tucker-Lewis 
Index (TLI), and Root Mean Square Error of Approximation (RMSEA). 
In keeping with guidelines suggested by Hu and Bentler [25], we    
considered fits to be respectively acceptable and excellent with val-
ues of 0.90 and 0.95 or higher for CFIs and TLIs and values of 0.08 and 
0.06 or lower for RMSEAs. As can be seen in Table 1, ESEMs provided 
noticeably better model fits than CFAs in all instances and matched or 
exceeded all criteria for excellent fits with only one exception (the TLI 
= 0.947 for Extraversion). 

Table 1: Fit Statistics for CFAs and ESEMs and Average Off-Target Loadings for the ESEMs.

Domain
CFA Fit Statistics* ESEM Fit Statistics and Average Off-Target Factor Loadings

CFI TLI RMSEA CFI TLI RMSEA Average off-target loading

Agreeableness 0.906 0.891 0.055 0.983 0.968 0.029 0.026

Conscientiousness 0.942 0.933 0.046 0.991 0.983 0.021 0.032

Extraversion 0.897 0.879 0.063 0.972 0.947 0.042 0.042

Neuroticism 0.922 0.909 0.056 0.976 0.954 0.04 0.037

Openness 0.895 0.878 0.049 0.974 0.950 0.031 0.014

Mean 0.912 0.898 0.054 0.979 0.960 0.033 0.030

Note: Subscale facets for the personality domains described in the table include: Trust, Morality, Altruism, Cooperation, Modesty, and Sympathy for 
Agreeableness; Self-Efficacy, Orderliness, Dutifulness, Achievement-Striving, Self-Discipline, and Cautiousness for Conscientiousness; Friendliness, 
Gregariousness, Assertiveness, Activity Level, Excitement-Seeking, and Cheerfulness for Extraversion; Anxiety, Anger, Depression, Self-Consciousness, 
Immoderation, and Vulnerability for Neuroticism; and Imagination, Artistic Interests, Emotionality, Adventurousness, Intellect, and Liberalism for Open-
ness to Experience. CFA: confirmatory factor analysis; ESEM: exploratory structural equation modeling; CFI: comparative fit index; TLI: Tucker–Lewis 
index; RMSEA: root mean square error of approximation. All analyses were based on correlated multifactor models using maximum likelihood parameter 
estimation. 

*Within the CFAs, all off-target loadings are set equal to zero.
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For CFAs, in contrast, CFIs or TLIs never reached levels for excel-
lent fits and failed to achieve acceptable fits across fit indices within 
three of the five personality domains (Agreeableness, Extraversion, 
and Openness to Experience). As would be desired, factor loadings 
for non-targeted factors in the ESEMs, on average, were negligible in 
size, ranging from 0.014 to 0.042 over the five personality domains.

Conclusion
Our intent in this brief article was to introduce readers to possible 

benefits of applying ESEMs within scientific research studies by com-
bining the best aspects of EFAs and CFAs. To facilitate applications of 
ESEMs, routines for analyzing such models are now available in the 
computer packages Mplus (Muthén & Muthén [26]) and R (Prokofieva 
et al. [27]). Examples and computer code for analyzing the multifac-
tor ESEMs described here as well as hierarchical and bifactor ESEMs 
can be found in Hong [23] and (Hong, et al. [28]. For more in-depth 
information about the nature and relative advantages of ESEMs over 
other procedures, we direct readers to the comprehensive treatment 
of such models in (Marsh, et al. [13]).
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