#### Introduction

In this paper, we consider the famous double slit experience in light of AT Math. We see that familiar values for certain variables reoccur. This model can be used on problems such as virus transmission. We begin with the familiar sine equals cosine (Figure 1).

Sine = cosine

Immunity =Contagion

cos θ = sin θ

Mv=1/t

Ln t(1/√2)=1/t

(1/√2)Ln t=1/t

(1/√2)y=y’

√2y=y’

∫√2y=∫y

(√2)y²/2=y

1/√2 ×y=1

y=√2

sin θ + cos θ

=sin 45 +cos 45=

=(1/√2)+(1/√2)

=2/√2

E = √ 2 =max of sin + cos (Figure 2)

E = hυ

=6.626 x 1/π

=208.82

y=f(x)=1/σ√(2π) [1]

E=y=2.08816(√(2π)=1/σ

σ=.191

### Entropy

S =1/ 2(Ln [2π eσ ²]

=-0.2366

t²-t-1=S=-0.2366

t²-t-1.2366=0

t=1.719 ; 0.719

E=0.582; 1.39

M=Ln t

=Ln 1.719

=542

M=Ln 0.719

=330

TE = M [0.15915] = 542(1/ 2π ) = 0.863 ~ 1/ sin 60°

TE=330[1/2π]=52.52

-1/2[X-μ)/σ]²=1

[(X-μ)(0.191)]²=-2

(X-μ)²=-0.7296

(X-1/2)²=-0.73

X²-X+1/4=-0.73

X²-X-1=0

### GMP

V=iR

105i(1)

i=t²

√105=t

t=10.247

X²-X-1=0

10247²-10247-1=9397~940

f (x) =1/ (0.191)√ (2π )exp (940 − 0.5) / 0.191 ²

=[1/0.191√2] ×(201.7)

=0.7467~3/4=1/s

s=t

E=3/4 =1/s=1/t (Figure 3)

Note: https://brilliant.org/wiki/double-slit-experiment/

ΔL = d sin θ

ΔL=(1.042-2.556)=1.514

1.514=√2 sin θ

sin θ=-1.514/√2

=-1.07056

θ=-0.618

dsin θ = nλ

(√2)(-.107056)=11.3 λ

λ=1.339=1/E=t

t²-t-1=E

E=546

GMP E=-1.247

dθ=y

y=θ=-.0.618

nλ=dy/D

11.3λ=(1/√2)(-1.0786)/ (1)

λ=1.047~105=V+

λ=h/P̅

104.7=6.626/P̅

P̅=158.~π/2=cos θ

θ=809=1/c4

y=nλD/d

1=11.3(λ)(1)/(√2)

λ=8

1/λ=1.25=Emin