info@biomedres.us   +1 (502) 904-2126   One Westbrook Corporate Center, Suite 300, Westchester, IL 60154, USA   Site Map
ISSN: 2574 -1241

Impact Factor : 0.548

  Submit Manuscript

Research ArticleOpen Access

Reappraisal of Target Volume Definition for Stereotactic Body Radiation Therapy (SBRT) of Pelvic Lymph Node Metastases from Prostate Cancer: An Original Article Volume 56- Issue 1

Omer Sager*, Selcuk Demiral, Ferrat Dincoglan and Murat Beyzadeoglu

  • Department of Radiation Oncology, University of Health Sciences, Gulhane Medical Faculty, Turkey

Received: April 04, 2024; Published: April 16, 2024

*Corresponding author: Omer SAGER, University of Health Sciences, Gulhane Medical Faculty, Department of Radiation Oncology, Gn.Tevfik Saglam Cad. 06018, Etlik, Kecioren Ankara, Turkey

DOI: 10.26717/BJSTR.2024.56.008805

Abstract PDF

ABSTRACT

Objective: High doses of irradiation may be focused on well-defined targets by use of Stereotactic Body Radiation Therapy (SBRT) under stereotactic localization, immobilization, and image guidance. The dose is better focused on the target and surrounding critical structures may be spared with SBRT due to steep dose gradients around the target. In the current study, we assessed target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).

Materials and Methods: Critical endpoint of this study has been defined as target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of CT and MRI. All included patients were referred to Department of Radiation Oncology at Gulhane Medical Faculty, University of Health Sciences for SBRT of pelvic lymph node metastases from prostate cancer. We conducted a comparative analysis of target volume definition by CT simulation images for radiation treatment planning and with MRI.

Results: Major goal of SBRT planning has been to achieve optimal target volume coverage without violation of critical organ dose constraints. As for the primary result of this study, we found that CT and MRI defined target volume definition resulted in differences.

Conclusion: These results may have implications for increased adoption of multimodality imaging for target volume definition for SBRT of pelvic lymph node metastases from prostate cancer, nevertheless, further thorough analysis and validation in future studies may be warranted.

Keywords: Prostate Cancer; Radiation Therapy (RT); Stereotactic Body Radiation Therapy (SBRT); Target Volume Definition

Abbreviations: AAPM: American Association of Physicists in Medicine; ICRUM: International Commission on Radiation Units and Measurements; LINAC: Linear Accelerator; CT: Computed Tomography; ART: Adaptive Rt; SBRT: Stereotactic Body Radiation Therapy; EBRT: External Beam Radiation Therapy

Introduction

Prostate cancer remains to be a major public health concern with its high incidence globally [1-3]. While the disease may be more commonly diagnosed at earlier stages thanks to improved screening programs, both the disease itself and therapeutic approaches used for management may deteriorate patients’ quality of life. Surgery, radiation therapy (RT), hormonotherapy and systemic agents may be used for prostate cancer management [2-7]. For irradiation, several techniques including external beam radiation therapy (EBRT), Stereotactic Body Radiation Therapy (SBRT), and brachytherapy may be utilized with regards to patient, disease, and treatment characteristics. Pelvic lymph node metastases from prostate cancer may be encountered during the course of disease, and management of these metastases is of utmost importance. Indeed, utilization of higher RT doses may contribute to improved local control outcomes for prostate cancer, nevertheless, toxicity profile of radiation delivery should also be taken into account to avoid excessive radiation induced toxicity. Admittedly, recent years have witnessed many advances in technology. Automatic segmentation techniques, molecular imaging methods, Image Guided RT (IGRT), Intensity Modulated RT (IMRT), stereotactic RT, and adaptive RT (ART) have been introduced for optimal radiotherapeutic management of patients [8-49]. SBRT may serve as an excellent tool for management of oligometastatic disease.

High doses of irradiation may be focused on well-defined targets by use of SBRT under stereotactic localization, immobilization, and image guidance. The dose is better focused on the target and surrounding critical structures may be spared with SBRT due to steep dose gradients around the target. As a relatively newer irradiation technique, SBRT has been increasingly utilized for improved radiotherapeutic management of several cancers. Clearly, it should be bearded in mind that improved treatment results may only be achieved through close collaboration among related disciplines for cancer management. From this standpoint, tumor boards may contribute to bringing together surgical oncologists, radiation oncologists, medical oncologists, imaging and other relevant specialists to discuss about patient, tumor, and treatment characteristics. While surgery may play a critical role for optimal management of prostate cancer, irradiation may serve as a complementary or alternative therapeutic strategy in certain circumstances. In the current study, we assessed target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).

Materials and Methods

Here at Department of Radiation Oncology at University of Health Sciences, we have long been treating a high patient population from several places from Turkey and abroad. Using state of the art irradiation techniques, several benign and malignant tumors are irradiated at our tertiary cancer center. Critical endpoint of this study has been defined as target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of CT and MRI. All included patients were referred to Department of Radiation Oncology at Gulhane Medical Faculty, University of Health Sciences for SBRT of pelvic lymph node metastases from prostate cancer. We conducted a comparative analysis of target volume definition by CT simulation images for radiation treatment planning and with MRI. CT simulations of the patients were done at CT-simulator (GE Lightspeed RT, GE Healthcare, Chalfont St. Giles, UK) available at our department. Also, MRI of patients have been acquired and used for comparative evaluation. A Linear Accelerator (LINAC) with the capability of sophisticated IGRT techniques has been utilized for irradiation. After rigid patient immobilization, planning CT images were acquired at CT-simulator for radiation treatment planning. Thereafter, acquired SBRT planning images have been transferred to the delineation workstation by use of the network. Treatment volumes and nornal tissues have been defined on these images and structure sets were generated. Also, target definition has also been performed on MRI for comparison purposes. All patients have been treated by using SBRT at Department of Radiation Oncology at Gulhane Medical Faculty, University of Health Sciences.

Results

This study has mainly focused on evaluation of treatment volume determination target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of CT and MRI. Stereotactic irradiation procedures have been performed at our Radiation Oncology Department of Gulhane Medical Faculty at University of Health Sciences, Ankara. Prior to SBRT, all included patients have been individually assessed by a multidisciplinary team of experts from surgical oncology, radiation oncology, and medical oncology. We took into account the reports by American Association of Physicists in Medicine (AAPM) and International Commission on Radiation Units and Measurements (ICRU) for precise SBRT planning. Radiation physicists took part in generation of SBRT treatment plans by considering relevant critical organ dose constraints through utmost consideration of contemporary guidelines and clinical experience. Also, published international guidelines and consensus recommendations for RT contouring and treatment of prostate cancer were considered. Tissue heterogeneity, electron density, CT number and HU values in CT images have also been considered by radiation physicists for precise SBRT planning. Major goal of SBRT planning has been to achieve optimal target volume coverage without violation of critical organ dose constraints. IGRT techniques including kilovoltage cone beam CT were utilized, and radiation treatment has been performed by Synergy (Elekta, UK) LINAC. As for the primary result of this study, we found that CT and MRI defined target volume definition resulted in differences. Taking this into account, fusion of CT and MRI has been performed for ground truth target volume definition for SBRT.

Discussion

Prostate cancer remains to be a major public health concern with its high incidence globally [1-3]. While the disease may be more commonly diagnosed at earlier stages thanks to improved screening programs, both the disease itself and therapeutic approaches used for management may deteriorate patients’ quality of life. Surgery, RT, hormonotherapy and systemic agents may be used for prostate cancer management [2-7]. For irradiation, several techniques including EBRT, SBRT, and brachytherapy may be utilized with regards to patient, disease, and treatment characteristics. Pelvic lymph node metastases from prostate cancer may be encountered during the course of disease, and management of these metastases is of utmost importance. Indeed, utilization of higher RT doses may contribute to improved local control outcomes for prostate cancer, nevertheless, toxicity profile of radiation delivery should alson be taken into account to avoid excessive radiation induced toxicity. Admittedly, recent years have witnessed many advances in technology. Automatic segmentation techniques, molecular imaging methods, IGRT, IMRT, stereotactic RT, and ART have been introduced for optimal radiotherapeutic management of patients [8-49]. SBRT may serve as an excellent tool for management of oligometastatic disease. High doses of irradiation may be focused on well-defined targets by use of SBRT under stereotactic localization, immobilization and image guidance. The dose is better focused on the target and surrounding critical structures may be spared with SBRT due to steep dose gradients around the target.

As a relatively newer irradiation technique, SBRT has been increasingly utilized for improved radiotherapeutic management of several cancers. Clearly, it should be beared in mind that improved treatment results may only be achieved through close collaboration among related disciplines for cancer management. From this standpoint, tumor boards may contribute to bringing together surgical oncologists, radiation oncologists, medical oncologists, imaging and other relevant specialists to discuss about patient, tumor, and treatment characteristics. While surgery may play a critical role for optimal management of prostate cancer, irradiation may serve as a complementary or alternative therapeutic strategy in certain circumstances. In the current study, we assessed target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of CT and MRI. Critical endpoint of this study has been defined as target volume definition for SBRT of pelvic lymph node metastases from prostate cancer with comparative analysis of CT and MRI. All included patients were referred to Department of Radiation Oncology at Gulhane Medical Faculty, University of Health Sciences for SBRT of pelvic lymph node metastases from prostate cancer. We conducted a comparative analysis of target volume definition by CT simulation images for radiation treatment planning and with MRI. Major goal of SBRT planning has been to achieve optimal target volume coverage without violation of critical organ dose constraints. IGRT techniques including kilovoltage cone beam CT were utilized, and radiation treatment has been performed by Synergy (Elekta, UK) LINAC. As for the primary result of this study, we found that CT and MRI defined target volume definition resulted in differences. Taking this into account, fusion of CT and MRI has been performed for ground truth target volume definition for SBRT.

From the standpoint of radiation oncology, optimal target volume definition and critical organ sparing may be considered among the critical components of optimal radiotherapeutic management. While determination of larger treatment volumes might result in excessive radiation induced toxicity, definition of smaller treatment volumes may lead to treatment failures. Adaptive RT strategies and multimodality imaging-based target definition have been suggested for achieving improved outcomes [50-106]. In the current study, we found that CT and MRI defined treatment volume determination resulted in differences. Taking this into account, fusion of CT and MRI was utilized for ground truth treatment volume definition. These results may have implications for increased adoption of multimodality imaging for target volume definition for SBRT of pelvic lymph node metastases from prostate cancer, nevertheless, further thorough analysis and validation in future studies may be warranted.

References

  1. Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics CA Cancer J Clin 74(1): 12-49.
  2. Pyun JH, Ko YH, Kim SW, Son NH (2024) The Short- and Long-Term Anticipation of Prostate Cancer Incidence in Korea: Based on Social Aging Trends and Prostate-Specific Antigen Testing Rate during the Last Decade. Cancers (Basel) 16(3): 503.
  3. Hemminki K, Zitricky F, Sundquist K, Sundquist J, Försti A, et al. (2024) Critical survival periods in prostate cancer in Sweden explored by conditional survival analysis. Cancer Med 13(7): e7126.
  4. Fizazi K, Gillessen S ESMO Guidelines Committee (2023) Updated treatment recommendations for prostate cancer from the ESMO Clinical Practice Guideline considering treatment intensification and use of novel systemic agents. Ann Oncol 34(6): 557-563.
  5. Ploussard G, Fiard G, Barret E, Brureau L, Créhange G, et al. (2022) French AFU Cancer Committee Guidelines - Update 2022-2024: prostate cancer - Diagnosis and management of localised disease. Prog Urol 32(15): 1275-1372.
  6. Lowrance W, Dreicer R, Jarrard DF, Scarpato KR, Kim SK, et al. (2023) Updates to Advanced Prostate Cancer: AUA/SUO Guideline (2023). J Urol 209(6): 1082-1090.
  7. Virgo KS, Rumble RB, Talcott J (2023) Initial Management of Noncastrate Advanced, Recurrent, or Metastatic Prostate Cancer: ASCO Guideline Update. J Clin Oncol 41(20): 3652-3656.
  8. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2023) Adaptive radiation therapy (art) for patients with limited-stage small cell lung cancer (LS-SCLC): A dosimetric evaluation. Indian J Cancer 60(1): 140-147.
  9. Gamsiz H, Sager O, Uysal B, Dincoglan F, Demiral S, et al. (2023) Outcomes of Sterotactic Body Radiotherapy (SBRT) for pelvic lymph node recurrences after adjuvant or primary radiotherapy for prostate cancer. J Cancer Res Ther 19(Suppl 2): S851-S856.
  10. Gamsiz H, Sager O, Uysal B, Dincoglan F, Demiral S, et al. (2022) Active breathing control guided stereotactic body ablative radiotherapy for management of liver metastases from colorectal cancer. Acta Gastroenterol Belg 85(3): 469-475.
  11. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2022) Concise review of radiosurgery for contemporary management of pilocytic astrocytomas in children and adults. World J Exp Med 12(3): 36-43.
  12. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2022) Optimal timing of thoracic irradiation for limited stage small cell lung cancer: Current evidence and future prospects. World J Clin Oncol 13(2): 116-124.
  13. Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2021) Evaluation of breathing-adapted radiation therapy for right-sided early stage breast cancer patients. Indian J Cancer 58(2): 195-200.
  14. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Omission of Radiation Therapy (RT) for Metaplastic Breast Cancer (MBC): A Review Article. International Journal of Research Studies in Medical and Health Sciences 6(1): 10-15.
  15. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2021) Concise review of stereotactic irradiation for pediatric glial neoplasms: Current concepts and future directions. World J Methodol 11(3): 61-74.
  16. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2020) Adaptive radiation therapy of breast cancer by repeated imaging during irradiation. World J Radiol 12(5): 68-75.
  17. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Gamsiz H, et al. (2020) Multimodality management of cavernous sinus meningiomas with less extensive surgery followed by subsequent irradiation: Implications for an improved toxicity profile. J Surg Surgical Res 6: 056-061.
  18. Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, Uysal B, et al. (2020) Single Fraction Stereotactic Radiosurgery (SRS) versus Fractionated Stereotactic Radiotherapy (FSRT) for Vestibular Schwannoma (VS). J Surg Surgical Res 6: 062-066.
  19. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Uysal B, et al. (2020) A Concise Review of Irradiation for Temporal Bone Chemodectomas (TBC). Arch Otolaryngol Rhinol 6: 016-020.
  20. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Utility of Molecular Imaging with 2-Deoxy-2-[Fluorine-18] Fluoro-DGlucose Positron Emission Tomography (18F-FDG PET) for Small Cell Lung Cancer (SCLC): A Radiation Oncology Perspective. Curr Radiopharm 12: 4-10.
  21. Dincoglan F, Sager O, Demiral S, Gamsiz H, Uysal B, et al. (2019) Fractionated stereotactic radiosurgery for locally recurrent brain metastases after failed stereotactic radiosurgery. Indian J Cancer 56(2): 151-156.
  22. Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, et al. (2019) Breathing adapted radiation therapy for leukemia relapse in the breast: A case report. World J Clin Oncol 10(11): 369-374.
  23. Dincoglan F, Sager O, Uysal B, Demiral S, Gamsiz H, et al. (2019) Evaluation of hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity after surgical resection of brain metastases: A single center experience. Indian J Cancer 56(3): 202-206.
  24. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2018) Evaluation of adaptive radiotherapy (ART) by use of replanning the tumor bed boost with repeated computed tomography (CT) simulation after whole breast irradiation (WBI) for breast cancer patients having clinically evident seroma. Jpn J Radiol 36: 401-406.
  25. Demiral S, Dincoglan F, Sager O, Uysal B, Gamsiz H, et al. (2018) Contemporary Management of Meningiomas with Radiosurgery. Int J Radiol Imaging Technol 80: 187-190.
  26. Sager O, Dincoglan F, Uysal B, Demiral S, Gamsiz H, et al. (2017) Splenic Irradiation: A Concise Review of the Literature. J App Hem Bl Tran 1: 101.
  27. Dincoglan F, Sager O, Demiral S, Uysal B, Gamsiz H, et al. (2017) Radiosurgery for recurrent glioblastoma: A review article. Neurol Disord Therap 1: 1-5.
  28. Demiral S, Dincoglan F, Sager O, Gamsiz H, Uysal B, et al. (2016) Hypofractionated stereotactic radiotherapy (HFSRT) for who grade I anterior clinoid meningiomas (ACM). Jpn J Radiol 34: 730-737.
  29. Dincoglan F, Beyzadeoglu M, Sager O, Demiral S, Gamsiz H, et al. (2015) Management of patients with recurrent glioblastoma using hypofractionated stereotactic radiotherapy. Tumori 101: 179-184.
  30. Gamsiz H, Beyzadeoglu M, Sager O, Demiral S, Dincoglan F, et al. (2015) Evaluation of stereotactic body radiation therapy in the management of adrenal metastases from non-small cell lung cancer. Tumori 101(1): 98-103.
  31. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2015) Adaptive splenic radiotherapy for symptomatic splenomegaly management in myeloproliferative disorders. Tumori 101(1): 84-90.
  32. Sager O, Dincoglan F, Beyzadeoglu M (2015) Stereotactic radiosurgery of glomus jugulare tumors: Current concepts, recent advances and future perspectives. CNS Oncol 4(2): 105-114.
  33. Sager O, Beyzadeoglu M, Dincoglan F, Uysal B, Gamsiz H, et al. (2014) Evaluation of linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) for cerebral cavernous malformations: A 15-year single-center experience. Ann Saudi Med 34(1): 54-58.
  34. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of Linear Accelerator (Linac)-Based Stereotactic Radiosurgery (Srs) for the Treatment of Craniopharyngiomas. UHOD-Uluslararasi Hematoloji Onkoloji Dergisi 24(2): 123-129.
  35. Sager O, Beyzadeoglu M, Dincoglan F, Gamsiz H, Demiral S, et al. (2014) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of glomus jugulare tumors. Tumori 100(2): 184-188.
  36. Ozsavaş EE, Telatar Z, Dirican B, Sager O, Beyzadeoğlu M (2014) Automatic segmentation of anatomical structures from CT scans of thorax for RTP. Comput Math Methods Med 2014: 472890.
  37. Demiral S, Beyzadeoglu M, Sager O, Dincoglan F, Gamsiz H, et al. (2014) Evaluation of linear accelerator (linac)-based stereotactic radiosurgery (srs) for the treatment of craniopharyngiomas. UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 24: 123-129.
  38. Gamsiz H, Beyzadeoglu M, Sager O, Dincoglan F, Demiral S, et al. (2014) Management of pulmonary oligometastases by stereotactic body radiotherapy. Tumori 100(2): 179-183.
  39. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2014) Management of patients with ≥ 4 brain metastases using stereotactic radiosurgery boost after whole brain irradiation. Tumori 100: 302-306.
  40. Sager O, Beyzadeoglu M, Dincoglan F, Demiral S, Uysal B, et al. (2013) Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience. Tumori 99(5): 617-622.
  41. Dincoglan F, Beyzadeoglu M, Sager O, Uysal B, Demiral S, et al. (2013) Evaluation of linear accelerator-based stereotactic radiosurgery in the management of meningiomas: A single center experience. J BUON 18(3): 717-722.
  42. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Kahya YE, et al. (2013) Dosimetric evaluation of critical organs at risk in mastectomized left-sided breast cancer radiotherapy using breath-hold technique. Tumori 99(1): 76-82.
  43. Demiral S, Beyzadeoglu M, Uysal B, Oysul K, Kahya YE, et al. (2013) Evaluation of stereotactic body radiotherapy (SBRT) boost in the management of endometrial cancer. Neoplasma 60: 322-327.
  44. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) Evaluation of active breathing control-moderate deep inspiration breath-hold in definitive non-small cell lung cancer radiotherapy. Neoplasma 59(3): 333-340.
  45. Saǧer Ö, Dinçoǧlan F, Gamsiz H, Demiral S, Uysal B, et al. (2012) Evaluation of the impact of integrated [18f]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging on staging and radiotherapy treatment volume definition of nonsmall cell lung cancer. Gulhane Med J 54: 220-227.
  46. Sager O, Beyzadeoglu M, Dincoglan F, Oysul K, Kahya YE, et al. (2012) The Role of Active Breathing Control-Moderate Deep Inspiration Breath-Hold (ABC-mDIBH) Usage in non-Mastectomized Left-sided Breast Cancer Radiotherapy: A Dosimetric Evaluation UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi 22: 147-155.
  47. Dincoglan F, Sager O, Gamsiz H, Uysal B, Demiral S, et al. (2012) Stereotactic radiosurgery for intracranial tumors: A single center experience. Gulhane Med J 54: 190-198.
  48. Dincoglan F, Beyzadeoglu M, Sager O, Oysul K, Sirin S et al. (2012) Image-guided positioning in intracranial non-invasive stereotactic radiosurgery for the treatment of brain metastasis. Tumori 98(5): 630-635.
  49. Sirin S, Oysul K, Surenkok S, Sager O, Dincoglan F, et al. (2011) Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: A single center experience. Vojnosanit Pregl 68(11): 961-966.
  50. Demiral S, Sager O, Dincoglan F, Uysal B, Gamsiz H, et al. (2018) Evaluation of Target Volume Determination for Single Session Stereotactic Radiosurgery (SRS) of Brain Metastases. Canc Therapy & Oncol Int J 12: 555848.
  51. Beyzadeoglu M, Sager O, Dincoglan F, Demiral S (2019) Evaluation of Target Definition for Stereotactic Reirradiation of Recurrent Glioblastoma. Arch Can Res 7(1): 3.
  52. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Evaluation of the Impact of Magnetic Resonance Imaging (MRI) on Gross Tumor Volume (GTV) Definition for Radiation Treatment Planning (RTP) of Inoperable High-Grade Gliomas (HGGs). Concepts in Magnetic Resonance Part A.
  53. Sager O, Dincoglan F, Demiral S, Gamsiz H, Uysal B, et al. (2019) Utility of Magnetic Resonance Imaging (Imaging) in Target Volume Definition for Radiosurgery of Acoustic Neuromas. Int J Cancer Clin Res 6: 119.
  54. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Radiosurgery Treatment Planning for Pituitary Adenomas. Canc Therapy & Oncol Int J 13: 555857.
  55. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Multimodality Imaging for Radiosurgical Management of Arteriovenous Malformations. Asian Journal of Pharmacy, Nursing and Medical Sciences 7(1): 7-12.
  56. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2019) Evaluation of Radiosurgery Target Volume Determination for Meningiomas Based on Computed Tomography (CT) And Magnetic Resonance Imaging (MRI). Cancer Sci Res Open Access 5: 1-4.
  57. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2019) Assessment of target definition based on Multimodality imaging for radiosurgical Management of glomus jugulare tumors (GJTs). Canc Therapy & Oncol Int J 15: 555909.
  58. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2019) Incorporation of Multimodality Imaging in Radiosurgery Planning for Craniopharyngiomas: An Original Article. SAJ Cancer Sci 6: 103.
  59. Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2020) Target Volume Determination for Precise Radiation Therapy (RT) of Central Neurocytoma: An Original Article. International Journal of Research Studies in Medical and Health Sciences 5(3): 29-34.
  60. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2020) Utility of Multimodality Imaging Based Target Volume Definition for Radiosurgery of Trigeminal Neuralgia: An Original Article. Biomed J Sci & Tech Res 26(2): 19728-19732.
  61. Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Assessment of Target Volume Definition for Radiosurgery of Atypical Meningiomas with Multimodality Imaging. Journal of Hematology and Oncology Research 3: 14-21.
  62. Dincoglan F, Beyzadeoglu M, Demiral S, Sager O (2020) Assessment of Treatment Volume Definition for Irradiation of Spinal Ependymomas: an Original Article. ARC Journal of Cancer Science 6(1): 1-6.
  63. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2020) Target Volume Definition for Stereotactic Radiosurgery (SRS) Of Cerebral Cavernous Malformations (CCMs). Canc Therapy & Oncol Int J 15: 555917.
  64. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Treatment Volume Determination for Irradiation of Recurrent Nasopharyngeal Carcinoma with Multimodality Imaging: An Original Article. ARC Journal of Cancer Science 6(2): 18-23.
  65. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Assessment of Target Volume Definition for Irradiation of Hemangiopericytomas: An Original Article. Canc Therapy & Oncol Int J 17(2): 555959.
  66. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Treatment Volume Determination for Irradiation of chordoma: an Original Article. International Journal of Research Studies in Medical and Health Sciences 5(10): 3-8.
  67. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2020) Multimodality Imaging Based Target Definition of Cervical Lymph Nodes in Precise Limited Field Radiation Therapy (Lfrt) for Nodular Lymphocyte Predominant Hodgkin Lymphoma (Nlphl). ARC Journal of Cancer Science 6(2): 06-11.
  68. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Radiosurgery Treatment Volume Determination for Brain Lymphomas with and without Incorporation of Multimodality Imaging. Journal of Medical Pharmaceutical and Allied Sciences 9(1): 2398-2404.
  69. Beyzadeoglu M, Dincoglan F, Sager O, Demiral S (2020) Determination of Radiosurgery Treatment Volume for Intracranial Germ Cell Tumors (GCTS). Asian Journal of Pharmacy, Nursing and Medical Sciences 8(3): 18-23.
  70. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2020) Target Definition of orbital Embryonal Rhabdomyosarcoma (Rms) by Multimodality Imaging: An Original Article. ARC Journal of Cancer Science 6(2): 12-17.
  71. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2020) Evaluation of Target Volume Determination for Irradiatıon of Pilocytic Astrocytomas: An Original Article. ARC Journal of Cancer Science 6(1): 1-5.
  72. Demiral S, Beyzadeoglu M, Dincoglan F, Sager O (2020) Evaluation of Radiosurgery Target Volume Definition for Tectal Gliomas with Incorporation of Magnetic Resonance Imaging (MRI): An Original Article. Biomedical Journal of Scientific & Technical Research (BJSTR) 27(2): 20543-20547.
  73. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2021) Assessment of Multimodality Imaging for Target Definition of Intracranial Chondrosarcomas. Canc Therapy Oncol Int J 18: 001-005.
  74. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Impact of Multimodality Imaging to Improve Radiation Therapy (RT) Target Volume Definition for Malignant Peripheral Nerve Sheath Tumor (MPNST). Biomed J Sci Tech Res 34(3): 26734-26738.
  75. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Multimodality Imaging Based Treatment Volume Definition for Reirradiation of Recurrent Small Cell Lung Cancer (SCLC). Arch Can Res 9: 1-5.
  76. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2021) Radiation Therapy (RT) Target Volume Definition for Peripheral Primitive Neuroectodermal Tumor (PPNET) by Use of Multimodality Imaging: An Original Article. Biomed J Sci & Tech Res 34(4): 26970-26974.
  77. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2021) Evaluation of Target Definition for Management of Myxoid Liposarcoma (MLS) with Neoadjuvant Radiation Therapy (RT). Biomed J Sci Tech Res 33(5): 26171-26174.
  78. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Radiation Therapy (RT) target determination for irradiation of bone metastases with soft tissue component: Impact of multimodality imaging. J Surg Surgical Res 7: 042-046.
  79. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2021) Evaluation of Changes in Tumor Volume Following Upfront Chemotherapy for Locally Advanced Non Small Cell Lung Cancer (NSCLC). Glob J Cancer Ther 7: 031-034.
  80. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2021) Assessment of posterior fossa target definition by multimodality imaging for patients with medulloblastoma. J Surg Surgical Res 7: 037-041.
  81. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2021) Assessment of the role of multimodality imaging for treatment volume definition of intracranial ependymal tumors: An original article. Glob J Cancer Ther 7: 043-045.
  82. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2022) Assessment of Target Definition for Extramedullary Soft Tissue Plasmacytoma: Use of Multımodalıty Imaging for Improved Targetıng Accuracy. Canc Therapy & Oncol Int J 22(4): 556095.
  83. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Target Volume Determination for Recurrent Uterine Carcinosarcoma: An Original Research Article Revisiting the Utility of Multimodality Imaging. Canc Therapy & Oncol Int J 22(3): 556090.
  84. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Reappraisal of Computed Tomography (CT) And Magnetic Resonance Imaging (MRI) Based Target Definition for Radiotherapeutic Management of Recurrent Anal Squamous Cell Carcinoma (ASCC): An Original Article. Canc Therapy & Oncol Int J 22(2): 556085.
  85. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2022) An Original Article for Assessment of Multimodality Imaging Based Precise Radiation Therapy (Rt) in the Management of Recurrent Pancreatic Cancers. Canc Therapy & Oncol Int J 22(1): 556078.
  86. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2022) Assessment of Target Volume Definition for Precise Radiotherapeutic Management of Locally Recurrent Biliary Tract Cancers: An Original Research Article. Biomed J Sci & Tech Res 46(1): 37054-37059.
  87. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2022) Radiation Therapy (RT) Target Volume Determination for Locally Advanced Pyriform Sinus Carcinoma: An Original Research Article Revisiting the Role of Multimodality Imaging. Biomed J Sci & Tech Res 45(1): 36155-36160.
  88. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2022) Improved Target Volume Definition for Radiotherapeutic Management of Parotid Gland Cancers by use of Multimodality Imaging: An Original Article. Canc Therapy & Oncol Int J 21(3): 556062.
  89. Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Reappraisal of multimodality imaging for improved Radiation Therapy (RT) target volume determination of recurrent Oral Squamous Cell Carcinoma (OSCC): An original article. J Surg Surgical Res 8: 004-008.
  90. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2022) Multimodality imaging based treatment volume definition for recurrent Rhabdomyosarcomas of the head and neck region: An original article. J Surg Surgical Res 8(2): 013-018.
  91. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2022) Appraisal of Target Definition for Management of Paraspinal Ewing Tumors with Modern Radiation Therapy (RT): An Original Article. Biomed J Sci & Tech Res 44(4): 35691-35696.
  92. Beyzadeoglu M, Sager O, Demiral S, Dincoglan F (2022) Assessment of Target Volume Definition for Contemporary Radiotherapeutic Management of Retroperitoneal Sarcoma: An Original Article. Biomed J Sci & Tech Res 44(5): 35883-35887.
  93. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2023) Appraisal of Target Definition for Anaplastic Thyroid Carcinoma (ATC): An Original Article Addressing the Utility of Multimodality Imaging. Canc Therapy & Oncol Int J 24(4): 556143.
  94. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2023) Reappraisal of Treatment Volume Determination for Parametrial Boosting in Patients with Locally Advanced Cervical Cancer. Canc Therapy & Oncol Int J 24(5): 556148.
  95. Demiral S, Sager O, Dincoglan F, Beyzadeoglu M (2023) Tumor Size Changes after Neoadjuvant Systemic Therapy for Advanced Oropharyngeal Squamous Cell Carcinoma. Canc Therapy & Oncol Int J 24(5): 556147.
  96. Demiral S, Dincoglan F, Sager O, Beyzadeoglu M (2023) Assessment of Changes in Tumor Volume Following Chemotherapy For Nodular Sclerosıng Hodgkin Lymphoma (NSHL). Canc Therapy & Oncol Int J 24(5): 556146.
  97. Sager O, Demiral S, Dincoglan F, Beyzadeoglu M (2023) Evaluation of Volumetric Changes in Transglottic Laryngeal Cancers After Induction Chemotherapy. Biomed J Sci & Tech Res 51(4): 43026-43031.
  98. Dincoglan F, Sager O, Demiral S, Beyzadeoglu M (2023) An Original Research Article for Evaluation of Changes in Tumor Size After Neoadjuvant Chemotherapy in Borderline Resectable Pancreatic Ductal Adenocarcinoma. Biomed J Sci & Tech Res 52(1): 43253-43255.
  99. Sager O, Dincoglan F, Demiral S, Beyzadeoglu M (2023) Assessment of Tumor Size Changes After Neoadjuvant Chemotherapy in Locally Advanced Esophageal Cancer: An Original Article. Biomed J Sci & Tech Res 52(2): 43491-43493.
  100. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Evaluation of Target Definition for Radiotherapeutic Management of Recurrent Merkel Cell Carcinoma (MCC). Canc Therapy & Oncol Int J 24(2): 556133.
  101. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2023) Reappraisal of Treatment Volume Determination for Recurrent Gastroesophageal Junction Carcinoma (GJC). Biomed J Sci & Tech Res 50(5): 42061-42066.
  102. Beyzadeoglu M, Dincoglan F, Demiral S, Sager O (2023) An Original Article Revisiting the Utility of Multimodality Imagıng For Refıned Target Volume Determinatıon Of Recurrent Kidney Carcinoma. Canc Therapy & Oncol Int J 23(5): 556122.
  103. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2023) Appraisal of Target Definition for Recurrent Cancers of the Supralottic Larynx. Biomed J Sci & Tech Res 50(5): 42131-42136.
  104. Beyzadeoglu M, Demiral S, Dincoglan F, Sager O (2024) Reappraisal of Target Definition for Sacrococcygeal Chordoma: Comparative Assessment with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Biomed J Sci & Tech Res 55(1): 46686-46692.
  105. Dincoglan F, Demiral S, Sager O, Beyzadeoglu M (2024) Assessment of Changes in Tumor Size After Induction Systemic Therapy for Locally Advanced Cervical Squamous Cell Carcinoma Running title: Tumor size changes in cervical carcinoma. Cancer Ther Oncol Int J 26(1): 001-007. CTOIJ.MS.ID.556178.
  106. Dincoglan F, Beyzadeoglu M, Demiral S, Sager O (2024) Appraisal of Changes in Tumor Volume After Neoadjuvant Systemic Therapy for Hepatocellular Carcinoma (HCC). Cancer Ther Oncol Int J 26(2): 001-004. CTOIJ.MS.ID.556183.