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Abstract

Many proponents of p-values assert that they measure the strength of the evidence with respect to a hypothesis. Many proponents of Bayes 
Factors assert that they measure the relative strength of the evidence with respect to competing hypotheses. From a philosophical perspective, both 
assertions are problematic because the strength of the evidence depends on auxiliary assumptions, whose worth is not quantifiable by p-values or 
Bayes Factors. In addition, from a measurement perspective, p-values and Bayes Factors fail to fulfill a basic measurement criterion for validity. For 
both classes of reasons, p-values and Bayes Factors do not validly measure the strength of the evidence.
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Introduction
Many researchers, statisticians, and mathematicians have 

suggested that the probability of a finding (or one more extreme), 
given a hypothesis (the familiar p-value), can be used as a measure 
of the strength of the evidence provided by that finding. In fact, 
no less an authority than Ronald Fisher argued that position 
(e.g., 1925; 1973) [1]. Although Bayesians eschew p-values, they 
favor Bayes Factors, which also concern probabilities of findings 
given hypotheses. To compute a Bayes Factor, one divides the 
probability of the finding given one hypothesis, by the probability 
of the finding given a competing hypothesis. Although there are 
many differences between aficionados of p-values and aficionados 
of Bayes Factors, both camps share a basic assumption, which is 
that the strength of the evidence can be captured by conditional 
probabilities of data given hypotheses. Our goal is to question this 
widely held assumption. We present two categories of arguments. 
The first category contains arguments based on philosophical 
considerations. The second category pertains to the specific issue 
of measurement, and whether conditional probabilities fulfill basic 
measurement requirements. 

Philosophical Considerations
A long-known but underappreciated aspect of theory testing 

is that scientific theories contain nono bservational terms. 
Consider Newton’s famous equation: .force mass acceleration=
. As Nobel Laureate Leon Lederman [2] indicated, these are non 
observational terms. Even mass is a non observational term that  
should not be confused with weight, an observational term. The  
difference becomes obvious upon considering that the same 
object would have the same mass on Earth or Jupiter, but would 
have different weights on the two planets. To make the connection  

 
between mass and weight, it is necessary to have auxiliary 
assumptions, that relate mass to weight on the planets of interest. 
In general, researchers who wish to test theories attempt either to 
falsify or verify them. In either case, it is necessary to address the 
fact that theories contain non observational terms. Somehow, non 
observational terms in theories must be brought down to the level 
of observation, to enable researchers to perform theory tests. This is 
accomplished by combining the theory with auxiliary assumptions, 
to derive empirical hypotheses with observational terms. Because, 
in contrast to theories, empirical hypotheses have observational 
terms, they are amenable to testing. 

Let us consider the traditional falsification perspective [3]. A 
naïve view might be that a single contrary finding disconfirms the 
theory, by the logic of as Lakatos [4] stated particularly clearly, a 
problem with this naïve view is that it starts from a premise that 
the empirical hypothesis derives from the theory, and only from 
the theory. But we have seen that empirical hypotheses derive from 
combinations of theories and auxiliary assumptions used to obtain 
observational terms in empirical hypotheses. As a logical matter, 
an empirical defeat disconfirms the conjunction of the theory and 
the auxiliary assumptions, which means that either the theory or 
the auxiliary assumptions (or both) are disconfirmed. There is no 
logically valid way to determine which alternative is the case, and 
as Duhem [5] and Lakatos [4] discussed in detail, it often is not 
straightforward to make the determination in practice.

Nor does coming at auxiliary assumptions from a verificationist 
position help much. As the cliché has it, empirical victories do not 
prove theories to be true because of the logical fallacy of affirming 
the consequent. For a chemistry example, phlogiston theory made 
some correct predictions, but the predictions worked for reasons 
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other than the truth of phlogiston theory, as Lavoisier eventually 
demonstrated. The main problem in this case was not auxiliary 
assumptions (though there were problems there too that Lavoisier 
fixed) but rather that empirical victories fail to provide a valid proof 
of the theory they were designed to serve, as they could occur for 
a reason other than the theory. Of course, modern researchers are 
aware of this, but nevertheless insist that empirical victories increase 
the probabilities of the theories they serve. Under the condition 
that auxiliary assumptions are ignored, this latter insistence is 
valid. However, if auxiliary assumptions are considered, Trafimow 
[6] has provided detailed analyses showing that empirical victories 
can increase or decrease theory probabilities. 

The latter may seem non intuitive, but an example might be 
the death-thought-suppression-and-rebound assumption that is 
an auxiliary assumption of terror management theory in social 
psychology. The problem is that most terror management theory 
predictions only work when there is a delay between making 
mortality salient and a wide variety of dependent variables. The 
death-thought-suppression-and-rebound assumption is that 
people suppress mortality salience initially, but it rebounds to 
become much more important during a delay. Thus, because of the 
rebound, making mortality salient works well after a delay but does 
not work well without a delay. Thus, using this auxiliary assumption, 
the fact that terror management theory effects work well when 
there is a delay, but do not work well when there is no delay, 
seems to strongly support terror management theory. However, 
Trafimow and Hughes [7] showed this auxiliary assumption to be 
wrong; mortality salience is greater when there is no delay than 
when there is a delay. Therefore, terror management theory effects 
should work best when there is no delay, rather than when there 
is a delay-the exact opposite of what is found in the voluminous 
literature on terror management theory findings. 

The poorness of the auxiliary assumption rendered previous 
evidence allegedly favoring the theory instead to strongly militate 
against it. None of this is to say that researchers should not try 
for empirical victories for theories they wish to support, or for 
empirical defeats for theories they wish to disconfirm, only that 
the strength of the evidence such empirical victories or defeats 
provide depends heavily on the worth of the auxiliary assumptions 
used to derive empirical predictions from theories. Neither 
p-values nor Bayes Factors measure the worth of these auxiliary 
assumptions, and therefore cannot provide a good measure of the 
strength of the evidence. To see clearly that neither p-values nor 
Bayes Factors can measure the worth of auxiliary assumptions, 
consider an example where a researcher is interested in whether 
attitudes cause behavioral intentions. Attitudes and behavioral 
intentions are non observational terms, so it is necessary to make 
auxiliary assumptions to bring attitudes down to the level of a 
manipulation (e.g., that the persuasive essay used in an experiment 
really does manipulate relevant attitudes) and to bring behavioral 
intentions down to the level of a measure (e.g., that the items used 
in the behavioral intention scale really measure relevant behavioral 
intentions).

 Note that the essay used and the items used are reasonably 
observable, as they can be read by anyone with passable vision who 

knows the language. Additional auxiliary assumptions might be 
that the sample used is randomly sampled from the population of 
interest, the randomization process is successful, a large assortment 
of nuisance factors does not matter (e.g., the time of day does not 
matter, the color of the experimenter’s clothing does not matter, and 
so on), and many others. Clearly, the worth of auxiliary assumptions 
is crucial for the strength of the evidence, yet p-values and Bayes 
Factors are incapable of measuring their worth. But perhaps an 
argument can be made in a more sophisticated way. For example, 
Chow [8] has suggested that theory testing can be considered in 
a cascading manner. There is a theory to be brought down to the 
level of an empirical hypothesis. In turn, the empirical hypothesis 
needs to be brought down to the level of a statisotical hypothesis. 
The statistical hypothesis, though far from definitive, is a necessary 
precursor to testing the theory. Thus, if one believes that p-values 
or Bayes Factors do a good job of measuring the strength of the 
evidence with respect to statistical hypotheses, they might be said 
to have value with respect to assessing the strength of the evidence 
more broadly. 

As will become clear in the following section, p-values and Bayes 
Factors fail to meet standard measurement criteria. Therefore, they 
are not good measures of the strength of the evidence, even with 
respect to statistical hypotheses (never mind empirical hypotheses 
or theories). But for the present, let us accept the wrong premise 
anyhow. Returning to the example of attitudes causing behavioral 
intentions, suppose the researcher performs an experiment using a 
persuasive essay to manipulate attitudes and anticipates an effect 
on behavioral intentions, measured using items on a behavioral 
intention scale. The empirical hypothesis is that randomly 
assigning participants to read or not read the persuasive essay, 
should influence scores on the behavioral intention scale. The 
statistical hypothesis is that the population mean for the behavioral 
intention scale in the persuasive essay condition is greater than the 
population mean for the behavioral intention scale in the control 
condition. Note how far the statistical hypothesis is not only from 
the empirical hypothesis, but especially from the base theory that 
attitudes cause behavioral intentions. 

Worse yet, the researcher who computes a p-value does not 
even test the researcher’s statistical hypothesis, because the 
p-value is based on the null hypothesis that the populations for the 
two conditions are the same. We emphasize that the null hypothesis 
is not the researcher’s statistical hypothesis, but rather a different 
statistical hypothesis. The poorness of the logic in making inferences 
about the researcher’s statistical hypothesis, based on a p-value 
testing the null hypothesis, has been covered by many others and 
need not be elaborated here. Let us pause and summarize. There is 
a theory with non observational terms and auxiliary assumptions 
are used to bring it down to the observational level expressed 
via an empirical hypothesis. In turn, the empirical hypothesis is 
transformed into a statistical hypothesis for increasing specificity. 
But the researcher who computes a p-value does not even test 
the statistical hypothesis. Instead, she tests the null hypothesis. 
Thus, she does not measure the strength of the evidence for her 
statistical hypothesis, nor her empirical hypothesis, nor her theory. 
A counter argument might be that the researcher could specify a 
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range hypothesis that is closer to the researcher’s actual empirical 
hypothesis, and a one-tailed p-value can be computed based on the 
range [9,10]. 

An obvious problem here is that there is no way to calculate 
the probability of the finding, given a range null hypothesis, unless 
one knows the prior probability distribution. The Bayesian way 
around this problem is to impose an arbitrary or subjective prior 
probability distribution, and integrate across it; whereas the 
NHST way is to maximize [11]. Maximization has the advantage of 
guaranteeing that the resulting p-value is not smaller than it should 
be, but maximization has the disadvantage that the resulting p-value 
may be slightly larger than it should be, or immensely larger than 
it should be, or anywhere in between. If the goal were to control 
the Type I error rate, maximization might make sense because the 
researcher could be assured of not committing a Type I error more 
than 5% of the time; however, the present issue is not about Type 
I error but rather about using p-values to measure the strength of 
the evidence. Because the researcher who maximizes has no way 
of knowing how far off she is from the true value, it is immediately 
obvious that p-values for range null hypotheses fail to validly 
measure the strength of the evidence. Maximizing constitutes an 
admission that one does not have a precise measure of the strength 
of the evidence.	

What about Bayes Factors? In some ways, Bayes Factors are 
superior to p-values. For example, suppose that one obtains p = 
.05. There is no logical way to make an inverse inference about the 
probability of the null hypothesis, given that p = .05, and so the 
p-value is not particularly useful. According to Kass and Raftery 
[11], the probability of the data given a hypothesis is useless 
information if one does not know the probability of the data with 
respect to a competing hypothesis. In contrast, a Bayes Factor gives 
the probability of the evidence with respect to two competing 
hypotheses, so that at least the researcher knows that evidence 
is more likely under one hypothesis than under a competing 
hypothesis. In addition, in the Bayesian scheme, it is possible 
to handle statistical hypotheses that are not specified precisely 
without resorting to a null hypothesis. For example, a researcher 
could test competing statistical hypotheses that the effect of the 
essay manipulation will be positive (experimental condition mean 
> control condition mean) or negative (experimental condition 
mean < control condition mean). 

However, a disadvantage of Bayes is that one needs to know 
the prior probability distribution to compute Bayes Factors for 
continuous data. For a Bayesian, this is a subjective or arbitrary 
process, with different Bayesians suggesting different types of 
prior distributions (uniform, Cauchy, and so on). This disadvantage, 
arguably, is partially mitigated by the possibility of performing 
sensitivity analyses. Another disadvantage is that Bayes Factors are 
very sensitive to precisely how the competing statistical hypotheses 
are stated [12]. In addition to the foregoing example of a positive 
versus a negative statistical hypothesis, there could be positive 
versus zero, extremely positive versus mildly positive, extremely 
positive versus everything else, and so on. And within each of these 
general possibilities, there are varieties of ranges for both statistical 
hypotheses that can be specified. Seemingly small differences in 

how statistical hypotheses are specified may strongly influence the 
Bayes Factor that is obtained. More generally, then, Bayes Factors 
necessitate two largely arbitrary or subjective decisions. Which 
prior probability distribution should be used and how should 
competing statistical hypotheses be specified? Our argument is not 
that these are fatal for using Bayes, or even for using Bayes Factors. 

Rather, it is that these arbitrary or subjective decisions are 
problematic for Bayes Factors being a valid measure of the strength 
of the evidence. The best one could say (and we will see later that 
even this does not work) is that Bayes Factors give the strength of 
the evidence with respect to: 

a)	 One way of stating a statistical hypothesis, 

b)	 Versus one way of stating a competing statistical 
hypothesis, 

c)	 Under one way of specifying the prior probability 
distribution (though sensitivity analyses may help here). 
With respect to the strength of the evidence pertaining to 
empirical hypotheses, auxiliary assumptions, or theory, 
Bayes Factors lack much. And all becomes worse when 
basic criteria for valid measurement are considered.

Basic Criteria for Valid Measurement
The focus of this section is on the reliability and consequent 

validity of p-values. Subsections presented below concern 
attenuation of validity due to unreliability and the increase in 
statistical regression due to unreliability. There also will be a 
subsection showing that the reliability of p-values is low, thereby 
calling their validity, as a measure of the strength of the evidence 
pertaining to the statistical hypothesis, strongly into question. 

Attenuation of Validity Due to Unreliability
It is a truism that measures should be valid and reliable. A 

measure is valid if it measures that which it is supposed to measure, 
but determining this is epistemologically complex, particularly 
as there is much debate about different ways to conceptualize 
validity, especially construct validity. Fortunately, such complexity 
is unnecessary at present. Everyone can agree that, whatever else 
matters for validity, minimum requirements are

a)	 The measure correlates with something (commonly 
termed as predictive or concurrent validity, depending on 
the time frame of the measures of the two variables) and 

b)	 The measure is reliable. There is a classic theorem 
that relates validity, in the minimal correlative sense 
(concurrent or predictive), with reliability [13]. 

It is provided below as Equation 1 where  is the observed 
correlation that can be expected between measures of two variables 
(observed validity),  is the correlation between true scores of the 
measures of the two variables (true correlative validity, imagining 
perfect reliability),  is the reliability of the measure of the variable 
designated as X, and  is the reliability of the measure of the variable 
designated as Y: 

              X XXY T T XX YYρ ρ ρ ρ′ ′= 		                (1)
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Before continuing the main thread of the argument, it is 
important to consider two points with respect to the classical 
theory and Equation 1 [14,15]. First, a person’s “true score” on 
a measure is the expectation across a hypothetical set of many 
test-taking occasions. In this hypothetical scheme, the person 
takes the test, is mind-wiped to return to the same state as before 
taking the test, takes the test again, and so on, ad infinitum. Thus, 
a correlation between true scores is not the correlation between 
latent variables, across participants; but rather the correlation 
between expectations on two measures, across participants. It is 
not necessary to assume anything about latent variables. Thus, Lord 
and Novick [14] described the classical theory as “weak” in the sense 
of making minimal assumptions, relative to more powerful modern 
measurement theories such as generalizability theory and item 
response theory. However, an advantage of the weak assumptions 
of the classical theory is that they are subsumed by more modern 
measurement theories [1] and so any conclusion drawn from the 
classical theory also would be drawn from one of the more modern 
and powerful theories, whereas it is not necessarily the case that 
conclusions drawn from a more powerful theory would be drawn 
either from the classical theory or from another powerful theory. 

Consequently, in those cases where the weak assumptions of 
the classical theory nevertheless suffice, an advantage is that there 
is no necessity to use stronger assumptions that are more likely to 
be wrong, misapplied, or not to fit with alternative measurement 
theories. Second, in the context of the classical theory, validity of a 
measure is correlative. An unavoidable consequence is that there 
is no way to obtain a pure validity coefficient of a measure as the 
correlation inevitably will depend on the reliability of the measure 

of concern, the reliability of the other measure, and the relationship 
between the two measures. However, it is possible to imagine 
that the other variable has perfect reliability, so that the product 
of the reliabilities of the two measures equals the reliability of 
the measure of concern. And it also is possible to assume various 
true validities and use Equation 1 to map out the consequences of 
unreliability of the measure of concern on the observed validity. 
Again, we emphasize that validity in this sense is correlative, and 
concerned with measures rather than with latent variables. Thus, 
it is a minimal type of validity that should not be confused with 
construct validity. 

Equation 1 shows how the observed validity (in the correlative 
sense) attenuates from the true validity as the reliability of the 
measure decreases (if the reliability of the other variable is set at 
1). As an extreme example, suppose that the measure has reliability 
= 0. In that case, the correlation one can expect to observe also 
will equal 0. Clearly, then, reliability sets an upper limit on validity. 
Although a reliable measure may or may not be valid, it is certain 
that an unreliable measure is not valid. In Figure 1, the product of 
the reliability of measures varies along the horizontal axis, from 0 
to 1. In addition, the true correlation is set at .2, .4, .6, .8, and 1.00. 
Thus, the observed validity, along the vertical axis, is a function of 
the product of the reliability of the measures (or just the reliability of 
the measure if the reliability of the other measure is set at unity) and 
the true correlation. As one considers each curve in Figure 1, going 
from right to left, Figure 1 illustrates how unreliability attenuates 
observed validity. Because of this, substantive researchers usually 
set 8 or 7 as lower limits for “acceptable” reliability. We shall see 
later that p-value reliability is much less than 8 or 7. 

Figure 1: Observed validity is expressed along the vertical axis as a function of the product of reliabilities of two measures 
along the horizontal axis and as a function of the true validity (five curves).

Increased Statistical Regression Due to Unreliability
Many have pointed out that p-values have a sampling 

distribution, just like any other statistic [16,17]. A consequence 
of this fact is that p-values are subject to the phenomenon of 
statistical regression, sometimes termed regression to the mean. 
Because obtaining p-values less than .05 is tantamount to being 

a requirement for publication, the phenomenon of statistical 
regression renders replication problematic. Low p-values in original 
published research should be expected not to replicate, because 
of regression to larger p-values in replication attempts [16,17]. 
Obvious as the foregoing argument is, it nevertheless has not had 
much effect on statistical practice in the sciences. One reason 

http://dx.doi.org/10.26717/BJSTR.2018.06.001384


Biomedical Journal of Scientific & Technical Research Volume 6- Issue 4: 2018 

Cite this article: David T, Michiel D B. Measuring the Strength of the Evidence. Biomed J Sci&Tech Res 6(4)- 2018. BJSTR. MS.ID.001384.  
DOI: 10.26717/ BJSTR.2018.06.001384. 5408

might be that nobody has ever taken the trouble to calculate the 
extent of the effect, thereby rendering the argument too abstract to 
induce substantive researchers to change their scientific practices. 
The regression calculations are performed here using Equation 
2-the standard formula describing statistical regression-where  
represents an individual score,  the mean score of the population, 
and  the reliability of the dependent variable at the population level: 

                  
( )reg z zZ zz Zρ µ µ′= − + 		                (2)

To apply Equation 2 to p-values, it is necessary to consider 
the reliability of p-values. It is helpful to imagine a population 
of possible original studies, as well as a second population of 
replication studies, with p-values associated with each original 
study and with each replication study. In this ideal universe, 
where each replication study corresponds to an original study, it 
would be theoretically possible to obtain a correlation coefficient 
representing the strength of the relationship between p-values 
associated with the cohort of original studies and p-values 
associated with the cohort of replication studies. In short, we would 
have an estimate of the reliability coefficient of p-values (estimated 
). In addition, in this ideal universe, there is no bias towards either 
high or low p-values, so the mean p-value is .5. If we substitute .5 
into Equation 2, Equation 3 follows:

                    
( .5) .5regZ zz Zρ ′= − + 		                (3)

The main difficulty with applying Equation 3 to p-values is that 
it is unclear what the reliability of p-values happens to be. There 
are two obvious ways to address the difficulty. First, it is possible 
to let the reliability vary between 0 and 1 to determine the effect 
of statistical regression, in general. Second, we can make use of 
actual data, to be described later. To commence with a general 
demonstration, imagine that the p-value obtained in a study that 
has just been published is .05 (this is Z in Equation 3). The goal is 
to use Equation 3 to make the best prediction of the p-value that 
can be expected to be obtained in a replication study. Figure 2 
illustrates how p-values much larger than .05 can be expected, upon 
replication, if the reliability of p-values is low, and that the problem 
is increasingly alleviated as the reliability of the p-values increases. 
However, even if we assume, unrealistically, that the p-value 
reliability is .9, statistical regression nevertheless implies that the 
best prediction for the p-value to be obtained in a replication study 
is .095 rather than the hoped for .05. We hasten to add that there 
is no implication that lower p-values are impossible in replication 
studies, only that the expected value is .095. And matters worsen 
very substantially as one moves from right to left in Figure 2. Thus, 
one would have to be an extreme optimist to assume that p-values 
in replication experiments would be likely to be close to original 
p-values. 

Figure 2: The expected value for p in a replication study is represented along the vertical axis, based on having obtained
 p = .05 in the original study, as a function of the reliability of p-values along the horizontal axis.

The Open Science Collaboration Reproducibility 
Project and the Reliability of p. 

The most systematic data that are available on the issue of 
replication can be obtained from the Open Science Collaboration 
Reproducibility Project. Researchers associated with this project 
replicated many studies published in top psychology journals, 
and anyone can download an EXCEL file from their website. From 
the present perspective, one complication is that although exact 

p-values were presented for the replication cohort of studies, 
inexact p-values were presented for the original cohort of studies 
(e.g., p < .05 rather than p = .023). Fortunately, the data file included 
test statistics (F, t,  and so on) and degrees of freedom, so that 
EXCEL could provide exact p-values. With exact p-values having 
been obtained for both cohorts of studies, it only remained to 
have EXCEL provide the correlation between the two columns of 
p-values. The correlation is .004. This is consistent with the general 
tenor of their article in Science (Open Science Collaboration, [18], 
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indicating skepticism about whether psychology is a replicable 
science. More to the present point, with reliability of .004, Equation 
2 renders obvious that the regression value for an original p-value 
of .05 is close to whatever the mean p-value is [19,20].

 In the idealized universe where there is no bias, and so the 
mean population p-value is .5, the regression p-value is extremely 
close to that (.4982). If we do not imagine an idealized universe, 
Equation 2 renders obvious that the regression p-value will 
be extremely close to the mean, and very little information is 
provided by the obtained p-value. And referring to Equation 1, the 
extremely low p-value reliability indicates that correlative validity 
is near zero, regardless of anything else. To be fair, the publication 
process induces factors that likely lowered p-value reliability, 
such as restriction of range, statistical regression, not having truly 
random samples, and others [21,22]. However, even making this 
concession, it seems unavoidable that at least as far as published 
p-values are concerned, reliability is low, whatever the reason. And 
if the reliability of p-values in published studies is low, as it clearly 
is, there is no reasonable way to support that they validly measure 
the strength of the evidence even with respect to null hypotheses. 
Possibly, the reliability of p-values would be raised if p-values 
played no role in the probability of acceptance of manuscripts for 
publication, as this would mitigate restriction of range as a problem 
[23]. 

But this solution, though it might improve the optics concerning 
the reliability of p-values, admits that p-values should not influence 
decisions of journal reviewers and editors. This would be quite an 
admission! Nor do matters improve if we consider Bayes Factors. 
If conditional probabilities fail, then quotients of conditional 
probabilities also fail. In fact, matters become even worse, as the 
unreliability of two conditional probabilities, rather than only 
one, becomes relevant. Given that attenuation due to unreliability 
and regression due to unreliability matter for a single conditional 
probability, they also matter for a quotient of two conditional 
probabilities [24-25].

Conclusion
In basic science, the goal is to propose and test theories. It is 

impossible to test theories without making auxiliary assumptions 
that connect non observational terms in theories with observational 
terms in empirical hypotheses. Consequently, the strength of 
the evidence depends strongly upon the worth of auxiliary 
assumptions, which is assessed by neither p-values nor Bayes 
Factors. A watered-down argument might be that p-values or Bayes 
Factors are at least good for assessing the strength of the evidence 
with respect to statistical hypotheses that admittedly are very far 
away from the theories they are used to test. But even this watered-
down argument fails. This is because p-values are computed with 
respect to the null hypothesis, and not the researcher’s empirical 
hypothesis. Ubiquitously, the empirical hypothesis is inexact, and 
so it is impossible to form a point statistical hypothesis that can be 
tested with a p-value. Nor can the problem be solved with range 
hypotheses because this requires maximizing the p-value, which 
is an implicit admission that the computed value is not a precise 

measure of the strength of the evidence. Nor do Bayes Factors solve 
these issues. 

To use Bayes Factors, the researcher must make arbitrary or 
subjective decisions about prior probability distributions, how 
to express one of the statistical hypotheses, and how to express 
the other of the statistical hypotheses. In addition to these 
considerations, a basic requirement of valid measures is that they 
must be reliable, but the foregoing section demonstrates that 
p-values and Bayes Factors fail there too. Conditional probabilities 
are unreliable, and consequently are strongly subject to attenuation 
due to unreliability and to regression due to unreliability-two ways 
of making the same point. Thus, if researchers are to continue to use 
p-values or Bayes Factors, they cannot justify that use by arguing 
that they are measuring the strength of the empirical evidence. 
Other justifications are needed.
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