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ARTICLE INFO Abstract

Background: Despite remarkable progress in treatment, patient management and 
increased survival rate, childhood acute lymphoblastic leukemia (ALL) remains a major 
public health problem. Traditionally white blood cell count (WBC) at diagnosis has been 
used as a prognostic marker. However, the molecular mechanisms and biological pathways 
modulating WBC have not been characterized. Here, we investigated whether genomic 
alterations in childhood ALL patients diagnosed with high (HWBC) and patients diagnosed 
with low (LWBC) could lead to measurable changes distinguishing the two patient groups 
and discovery of signaling pathways modulating WBC. 

Methods: We addressed this knowledge gap by comparing gene expression levels 
between 99 patients diagnosed with LWBC and 108 patients diagnosed with HWBC. Highly 
significantly differentially expressed genes resulting from the analysis were subjected to 
network and pathway analysis using the Ingenuity pathway analysis (IPA) software. 

Results: We discovered a signature of 289 highly significantly differentially expressed 
genes distinguishing patients with LWBC from patients with HWBC. We discovered gene 
regulatory networks containing functionally related genes with overlapping functions. 
The investigation revealed multiple biological pathways including protein ubiquitination, 
NRF2-mediated oxidative stress response, FGF, AMPK, CD40, Erythropoietin, JAK/STAT, 
B cell receptor, STAT3, IL-12, Role of JAK1, JAK2 and TYK2 interferon and P53 signalling 
pathways dysregulated in response to increased WBC. 

Conclusion: The investigation revealed a prognostic signature distinguishing patient 
diagnosed with LWBC from patients diagnosed with HWBC. Additionally, the study 
revealed multiple signaling pathways modulating WBC, which could serve as therapeutic 
targets. Further research is recommended to integrate transcriptome data on WBC with 
information on other prognostic markers. 

Introduction 
Acute Lymphoblastic Leukemia (ALL) is the most common 

diagnosed childhood cancer and the leading cause of cancer-related 
death among children in the US [1,2]. An estimated 6000 new cases 
(3,400 males and 2,600 females) of acute lymphoblastic leukaemia 
(ALL) are diagnosed annually in the US [1,2]. Over the last several 
decades, treatment of ALL has advanced significantly, with 5-year  

 
event free survival rates of over 90% [1,2]. This remarkable progress 
in treatment and improvement in outcomes can be attributed to new 
protocols that rely on stratifying patients into risk groups based on 
the underlying biological and clinical characteristics, as well as the 
success of initial treatment response with respect to chemotherapy 
treatment [3]. However, despite the dramatic improvements in both 
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event-free survival rates and overall survival, significant challenges 
remain. One of the more significant challenges is that 10%-20% of 
the patients still do not respond to the current treatment protocols, 
while among the patients who initially respond to treatment, 
20-30% tend to relapse [3-5]. Moreover, the overall cure rate for 
relapsed patients remains low, despite intensified chemotherapy 
and stem cell transplantation [3-5]. Therefore, there is an urgent 
need for the discovery of novel prognostic markers and targets for 
the development of novel targeted therapies. 

Traditionally, white blood cell count (WBC) in peripheral at 
diagnosis has been one of the strongest independent predictors of 
induction failure, resistant disease and risk of relapse in pediatric 
ALL [6,7]. Accordingly, WBC has been used to stratify patients and 
to guide treatment decisions [6,7]. Large epidemiologic studies 
have investigated the prognostic impact of WBC in ALL and shown 
that non-remission and relapse patients consistently have high 
WBC than those in remission [7]. Crucially, current treatment 
protocols developed using phase 3 clinical trials conducted by 
pediatric oncology consortia in Europe and in North America have 
demonstrated that initial white blood cell (WBC) is a consistent 
predictor of clinical outcomes [8,9]. Moreover, WBC has been 
incorporated in the National Cancer Institute (NCI) Rome criteria 
protocols for risk stratification of children with ALL [10,11]. Yet, 
despite the large available body of knowledge about WBC as a 
powerful prognostic marker and a predictor of relapse in ALL 
[10,11], the molecular mechanisms and the biological pathways 
modulating WBC have not been well characterized. 

Over the last decade, advances in microarray technology 
have enabled molecular classification of subtypes of ALL [12-14]. 
Discoveries from microarray technology have provided insights 
about the molecular basis of childhood ALL [15,16]. Recently 
Edwards et al. reported a gene signature of high WBC in ALL using 
a small sample of gene expression data [17]. However, the study 
did not characterize the gene regulatory networks and signaling 
pathways modulating WBC. A deeper understanding of the 
genomic differences between patients diagnosed with high WBC 
(HWBC) and patients diagnosed with low WBC (LWBC), as well 
as the elucidation of the “druggable” pathways dysregulated by 
genomic alterations in response to increased WBC, should improve 
patient stratification and speed the development of novel targeted 
therapeutics. 

The Objectives of this Investigation were 

a)	 To discover and characterize the molecular signature 
distinguishing patients diagnosed with LWBC from patients 
diagnosed with HWBC, and

b)	 To elucidate gene regulatory networks and signaling 
pathways modulating WBC in childhood ALL. Our working 
hypothesis is that genomic alterations in ALL patients 
diagnosed with WBC could lead to measurable changes guiding 
therapeutic decision making by distinguishing patients with 

HWBC from patients with LWBC. We further hypothesized 
that genomic alterations in genes distinguishing the two 
patient groups affect entire molecular networks and signaling 
pathways which are dysregulated in response to increased 
WBC. We addressed these hypotheses using publicly available 
gene expression data from the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) https://
ocg.cancer.gov/programs/target/data-matrix Phase I dataset 
on childhood ALL [18]. 

Material and Methods

Source of Gene Expression Data 

We used publicly available gene expression data generated 
from a total of 207 patients diagnosed with high risk pediatric 
B-cell ALL enrolled in the Children’s Oncology Group (COG) Study 
P9906 a phase I clinical trial. Gene expression data and associated 
clinical information were generated by the Therapeutically Appli-
cable Research to Generate Effective Treatments (TARGET) project 
https://ocg.cancer.gov/programs/target/data-matrix [18]. Gene 
expression data was downloaded from the National Center for Bio-
technology Information (NCBI’s) Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/gds/) under accession 
number GSE11877 [15,16]. The details about sample processing 
and experimental protocol have been provided by the data origi-
nators [15,16]. Because the same TARGET barcode structure was 
used for both clinical data and molecular data, we used the bar-
codes structure to integrate patient-based clinical information with 
sample-based gene expression data. All patients were treated uni-
formly with a modified augmented Berlin-Frankfurt-Münster Study 
Group (BFM) regimen [15,16]. This trial targeted a subset of newly 
diagnosed high-risk ALL patients, which have experienced a poor 
outcome (44% relapse-free survival (RFS) at 5 years) in prior stud-
ies [15,16]. 

Patients with central nervous system disease or testicular 
leukemia were eligible for the trial regardless of age or WBC count 
at diagnosis. Patients with very high-risk features (BCR-ABL1 or 
hypodiploidy) were excluded, whereas those with low-risk features 
(trisomies of chromosomes 4 or 10; t [12;21] [ETV6-RUNX1]) 
were included unless they had central nervous system disease 
or testicular leukemia. For this study, previously cryopreserved 
residual pre-treatment leukemia specimens were available on a 
representative cohort of 207 with gene expression data and clinical 
information. The sample distributions were 108 patients diagnosed 
with HWBC and 99 patients diagnosed with LWBC. LWBC was 
defined as initial WBC of < 50,000/mm3, and high HWBC was 
defined as initial WBC count ≥ 50,000/mm3. The patient age ranged 
from 0 to 21years. The gene expression dataset contained 54,613 
probes and was processed using the Affymetrix Human Genome 
U133 Plus 2.0 Array chip using standard Affymetrix protocol. The 
probes from the U133 Plus 2.0 chip were mapped to gene names 
using the batch query as implemented in the Affymetrix database 
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Net Affx to annotate the probes with matching gene symbols. The 
data was processed to remove spiked controls. 

Analysis of Gene Expression Data

The data was normalized, and log transformed using a log2. 
Using the log transformed data, we compared gene expression 
levels between patients diagnosed with LWBC and patients 
diagnosed with HWBC, by fitting the data to a linear model and 
performing empirical Bayes moderated statistical tests using the 
Limma package [19] as implemented in Bioconductor using R 3.5.0 
[20] to obtain estimates of p-values and log-fold-change (LFC) 
values as measures of the differences in gene expression levels 
between the two patient groups. We used the false discovery rate 
procedure to correct for multiple hypothesis testing [21]. The 
p-value was adjusted for censored variables such as age and gender. 
The genes were ranked on adjusted p-values, LFC and the false 
discovery rate. A significant adjusted p-value of P< 0.05 was used 
as the threshold for declaring significant differential expression. To 
determine whether the significantly differentially expressed genes 
distinguishing the two patient groups are functionally related 
and have similar patterns of expression profiles, we performed 
hierarchical clustering using a set of the most highly significantly 
differentially  expressed genes between the two patient groups. For 
hierarchical clustering we used the Pearson correlation coefficient 
as the measure of distances between pairs of genes and complete 
linkage as the clustering method. 

Hierarchical clustering was performed using Morpheus soft-
ware developed by the Broad Institute [22]. We performed network 
and pathway analysis and visualization using the Ingenuity Pathway 
Analysis (IPA) system [23]. For IPA analysis, gene symbols approved 
by the Human Genome Organization’s Nomenclature Committee for 
the most highly significantly differentially expressed genes distin-
guishing patients diagnosed with LWBC from patients diagnosed 
with HWBC were mapped onto networks and canonical pathways 
as implemented in IPA [23]. Using the network and pathway de-
sign and analysis modules as implemented in IPA, we identified the 
most significant molecular networks and pathways, by computing 
the probability scores (Z-scores) for molecular networks and the 
log P-values for functional category and signaling pathways, to as-
sess the likelihood and reliability of correctly assigning the genes to 
the correct networks, functional category and signaling pathways. 
Molecular functions, biological processes, and cellular components 
in which the genes are involved were assessed using the Gene On-
tology (GO) [24] information as implemented in IPA.

Results 
Traditionally, clinicians and pediatric hematology and oncolo-

gists have used WBC at diagnosis in childhood acute lymphoblas-
tic leukemia as a prognostic marker to guide therapeutic decision 
making at the point of care. However, to date, the molecular mech-
anisms modulating WBC have not been characterized. This investi-
gation was conducted to address this knowledge gap. Here we sum-
marize the findings from this investigation. 

Discovery of a Gene Signature Modulating WBC

The first objective was to discover and characterize the 
molecular signature distinguishing patients diagnosed with 
LWBC from patients diagnosed with HWBC. We hypothesized 
that genomic alterations in ALL patients diagnosed with WBC 
could lead to measurable changes guiding therapeutic decision 
making by distinguishing patients with HWBC from patients with 
LWBC. To address this hypothesis, we compared gene expression 
levels between the 99 patients diagnosed with LWBC and the 
108 patients diagnosed with HWBC. After correcting for the 
false discovery rate, the analysis produced a signature of 5,683 
significantly differentially expressed genes at a nominal p-value 
(P<0.05). Evaluation of significantly differentially expressed genes 
using the estimates of p-values and FDR revealed a signature of 289 
highly significantly (P<0.0001; FDR≤0.01) differentially expressed 
genes distinguishing the two patient groups. This confirmed our 
hypothesis that genomic alterations in patients diagnosed with 
HWBC and patients diagnosed with LWBC could lead to measurable 
changes affecting therapeutic decision making by distinguishing 
the two patient groups. A list of the 27 most highly significantly (P< 
0.00001; FDR <0.01) differentially expressed genes distinguishing 
patients diagnosed with HWBC from patients diagnosed with 
LWBC are presented in Table 1. A complete list of all the 289 highly 
significantly differentially expressed genes distinguishing the two 
patient groups are presented in Table S1 provided as supplementary 
data to this report.

Table 1: List of the topmost highly significantly (P<10-5) differ-
entially expressed genes distinguishing patients diagnosed with 
HWBC from patients diagnosed with LWBC.

Gene Symbol Cytoband Adjusted p-value

CRIP1 14q32.33 2.58E-07

PPBP 4q12-q13 1.56E-06

FEM1B 15q22 2.86E-06

KLF10 8q22.2 7.31E-06

ZNF511 10q26.3 1.56E-05

POM121 7q11.2 1.56E-05

CCDC47 17q23.3 1.56E-05

EPC2 2q23.1 1.56E-05

NR1D2 3p24.2 1.69E-05

NUFIP2 17q11.2 2.57E-05

TOR1AIP1 1q24.2 2.83E-05

KIAA1191 5q35.2 2.85E-05

PPP1R14A 19q13.1 3.39E-05

POM121C 7q11.2 4.75E-05

PIM3 22q13 4.85E-05

STK17A 7p13 5.28E-05

MED6 14q24.2 5.28E-05

RNASEH2B 13q14.3 5.56E-05

GEMIN8 Xp22.2 5.56E-05

SLC7A5 16q24.3 6.81E-05

ABCF1 6p21.33 6.85E-05
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ETV3 1q21-q23 7.99E-05

PSMD12 17q24.2 7.99E-05

RAF1 3p25 7.99E-05

ACIN1 14q11.2 7.99E-05

DDX52 17q21.1 8.15E-05

WDR49 3q26.1 8.42E-05

Table S1: List of all the 289 highly significantly differentially 
expressed genes distinguishing patients diagnosed with LWBC 
from patients diagnosed with HWBC.

Gene Symbol Cytoband adj.P.Val

CRIP1 14q32.33 2.58E-07

PPBP 4q12-q13 1.56E-06

FEM1B 15q22 2.86E-06

KLF10 8q22.2 7.31E-06

ZNF511 10q26.3 1.56E-05

POM121 /// POM121C 7q11.2 /// 7q11.23 1.56E-05

CCDC47 17q23.3 1.56E-05

EPC2 2q23.1 1.56E-05

NR1D2 3p24.2 1.69E-05

NUFIP2 17q11.2 2.57E-05

TOR1AIP1 1q24.2 2.83E-05

KIAA1191 5q35.2 2.85E-05

PPP1R14A 19q13.1 3.39E-05

POM121C 7q11.2 4.75E-05

PIM3 22q13 4.85E-05

STK17A 7p13 5.28E-05

MED6 14q24.2 5.28E-05

RNASEH2B 13q14.3 5.56E-05

GEMIN8 Xp22.2 5.56E-05

SLC7A5 16q24.3 6.81E-05

ABCF1 6p21.33 6.85E-05

ETV3 1q21-q23 7.99E-05

PSMD12 17q24.2 7.99E-05

RAF1 3p25 7.99E-05

ACIN1 14q11.2 7.99E-05

DDX52 17q21.1 8.15E-05

WDR49 3q26.1 8.42E-05

HIC2 22q11.21 0.0001017

NCBP2-AS2 3q29 0.0001017

PIGF 2p21-p16 0.0001017

LCN8 9q34.3 0.0001017

NARF 17q25.3 0.0001074

MED6 14q24.2 0.0001201

P4HA2 5q31 0.0001201

KCTD2 17q25.1 0.0001292

TMEM87A 15q15.1 0.0001292

LOC100291666 --- 0.0001292

TMEM107 17p13.1 0.0001292

LOC101928429 --- 0.0001292

SERPINI2 3q26.1 0.0001292

SYS1 20q13.12 0.0001335

LINC01013 --- 0.0001389

MED1 17q12 0.0001413

ANKRD12 18p11.22 0.0001413

YTHDF1 20q13.33 0.0001413

ADNP 20q13.13 0.0001413

IFT81 12q24.13 0.0001413

RAB22A 20q13.32 0.0001495

DBNDD2 /// SYS1-DBNDD2 20q13.12 0.0001594

CUX1 7q22.1 0.0001613

MAF 16q22-q23 0.0001638

TMEM87A 15q15.1 0.0001638

EFHC1 6p12.3 0.0001638

STAU1 20q13.1 0.0001738

TAGAP 6q25.3 0.0001738

APPBP2 17q23.2 0.0001816

CSNK1A1 5q32 0.0001847

NARF 17q25.3 0.0001863

NDFIP1 5q31.3 0.0001908

ATP2A2 12q24.11 0.0001908

CCDC43 17q21.31 0.0001908

CCDC22 Xp11.23 0.000215

LOC105375089 --- 0.000228

CCDC93 2q14.1 0.0002309

RRAGC 1p34 0.0002342

TSPYL2 Xp11.2 0.0002352

NGDN 14q11.2 0.0002352

N4BP2L2 13q13.1 0.0002352

TRIM66 11p15.4 0.0002373

METRNL 17q25.3 0.0002423

RNMT 18p11.21 0.0002423

EPG5 18q12.3 0.0002423

NFKBIB 19q13.1 0.00025

KBTBD2 7p14.3 0.00025

TIMM23 /// TIMM23B 10q11.23 0.00025

SNIP1 1p34.3 0.0002526

CHERP 19p13.1 0.0002526

MYO15B 17q25.1 0.0002526

RBKS 2p23.3 0.0002526

ZRANB1 10q26.13 0.0002533

TAZ Xq28 0.0002578

RBM43 2q23.3 0.0002678

GID8 20q13.33 0.0002729

MTPAP 10p11.23 0.0002764

FAM46C 1p12 0.0002821

SURF4 9q34.2 0.0003016

SIN3B 19p13.11 0.0003044

MAPKAPK2 1q32 0.0003118
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HSPA9 5q31.1 0.0003118

FBXO21 12q24.22 0.0003118

SUPT6H 17q11.2 0.0003118

MFN2 1p36.22 0.0003118

NPEPPS 17q21 0.0003118

MTPAP 10p11.23 0.0003118

MLX 17q21.1 0.0003118

PNKP 19q13.3-q13.4 0.0003118

RANBP2 2q12.3 0.0003193

EIF5 14q32.32 0.0003193

CANT1 17q25.3 0.0003212

TIMM22 17p13 0.0003212

ERLEC1 2p16.2 0.0003212

KIAA1683 19p13.1 0.0003212

TMEM71 8q24.22 0.0003212

IGF2BP3 7p11 0.0003249

NTHL1 16p13.3 0.0003278

HAUS3 4p16.3 0.0003341

CDK12 17q12 0.0003351

PRRC2B 9q34.13 0.0003416

SCML1 Xp22 0.0003432

ZNF408 11p11.2 0.0003432

SPICE1 3q13.2 0.0003437

IQCK 16p12.3 0.0003437

PPP1R16B 20q11.23 0.0003472

BAG5 14q32.33 0.0003472

TAGLN2 1q21-q25 0.0003472

FGGY 1p32.1 0.0003472

SLC15A2 3q13.33 0.0003472

YY1 14q 0.000353

TADA2B 4p16.1 0.0003584

DNAJB11 3q27.3 0.0003584

S100A4 1q21 0.0003584

CANT1 17q25.3 0.0003713

CSNK1A1 5q32 0.0003721

ZNF92 7q11.21 0.0003757

SETD1A 16p11.2 0.0003984

DEDD2 19q13.2 0.0004107

PFKL 21q22.3 0.0004159

TCEB3 1p36.1 0.0004187

LRRC37A /// LRRC37A2 /// 
LRRC37A4P 17q21.31 0.0004187

OSBPL2 20q13.33 0.0004201

MARK3 14q32.32 0.0004316

ADGRL1 19p13.2 0.0004409

NRM 6p21.33 0.0004409

LOC344887 3q27.2 0.0004409

TAGAP 6q25.3 0.000442

CHD2 15q26 0.0004512

PTPN6 12p13 0.0004512

SOCS5 2p21 0.000453

REL 2p13-p12 0.0004615

BPGM 7q33 0.0004615

SLC25A33 1p36.22 0.0004615

STAU1 20q13.1 0.0004615

CDK12 17q12 0.0004615

UBE2Q1 1q21.3 0.0004741

TRAP1 16p13.3 0.0004853

ILF3 19p13.2 0.0005067

LRRC8A 9q34.11 0.0005067

SNRNP200 2q11.2 0.0005067

NXF1 11q12-q13 0.0005067

PDCD4 10q24 0.0005067

ZBTB1 14q23.3 0.0005067

ADRM1 20q13.33 0.0005067

CARD8 19q13.33 0.0005067

PIN4 Xq13 0.0005067

YARS 1p35.1 0.0005234

STX2 12q24.33 0.0005234

AP1S2 Xp22.2 0.0005234

CRTC2 1q21.3 0.0005302

SAR1A 10q22.1 0.000536

KLHDC1 14q21.3 0.0005465

PHF12 17q11.2 0.0005506

PHC1 12p13 0.0005506

HGH1 8q24.3 0.0005603

DUSP22 6p25.3 0.0005603

SETD2 3p21.31 0.0005603

GOLGA4 3p22-p21.3 0.0005603

FAM83D 20q11.23 0.0005701

CDKL1 14q21.3 0.0005701

NUFIP2 17q11.2 0.0005853

PFKFB3 10p15.1 0.0005886

PRCC 1q21.1 0.0005886

STAMBP 2p13.1 0.0005886

CD6 11q13 0.0005986

ANKRD11 16q24.3 0.0005986

HSPA14 10p13 0.0005986

KAT7 17q21.32 0.0005986

PPP1R21 2p16.3 0.0005986

MGST2 4q28.3 0.0005986

LINC01013 --- 0.0005986

PSMA3-AS1 14q23.1 0.0006218

GRPEL1 4p16 0.0006218

EP300 22q13.2 0.0006373

TBC1D23 3q12.2 0.0006373

ATG14 14q22.3 0.0006387

CNNM2 10q24.32 0.0006531
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TOPORS 9p21 0.0006531

FGFR1 8p11.23-p11.22 0.0006643

TNFAIP3 6q23 0.0006643

RASSF5 1q32.1 0.0006643

CCNK 14q32 0.0006643

TAPT1-AS1 4p15.32 0.0006643

AHNAK 11q12.2 0.0006643

IGF2BP3 7p11 0.0006643

WDR78 1p31.3 0.0006643

TNKS2 10q23.3 0.000665

STAU1 20q13.1 0.000665

RALGAPB 20q11.23 0.000665

TMEM168 7q31.32 0.000665

PIGK 1p31.1 0.000665

SLC38A9 5q11.2 0.000665

RANBP2 2q12.3 0.0006657

DDX3Y Yq11 0.0006862

CLEC2D 12p13 0.0006901

RTF1 15q15.1 0.0006941

UBXN2A 2p23.3 0.0006941

TCTN1 12q24.11 0.0006941

MYO1G 7p13 0.0006941

RSRC2 12q24.31 0.0006954

ZC3HAV1L 7q34 0.0006954

KRT8P12 3q25.33 0.0007027

IP6K2 3p21.31 0.0007056

CCDC93 2q14.1 0.0007056

RORA 15q22.2 0.0007118

USP47 11p15.3 0.0007118

TMCC1 3q22.1 0.0007118

MYO15B 17q25.1 0.0007186

IGH /// IGHA1 /// IGHA2 14q32.33 0.0007192

RANBP2 2q12.3 0.0007202

KATNBL1 15q14 0.0007202

CWC25 17q12 0.0007229

RBM38 20q13.31 0.0007356

LOC102724200 /// 
TRAPPC10 21q22.3 0.0007356

RMND5A 2p11.2 0.0007356

PDCD4 10q24 0.0007356

KPNA6 1p35.1 0.000739

EFHC1 6p12.3 0.000739

EZH1 17q21.1-q21.3 0.000739

SEC16A 9q34.3 0.0007482

PDCD4 10q24 0.0007567

C6orf106 6p21.31 0.0007586

TBC1D20 20p13 0.0007586

CPSF7 11q12.2 0.0007586

CREG1 1q24 0.00076

POLDIP3 22q13.2 0.00076

AKTIP 16q12.2 0.0007623

CSNK1A1 5q32 0.0007623

VAPA 18p11.22 0.0007623

HIST1H2BI 6p22.2 0.0007623

FAM168B 2q21.1 0.000763

SLC25A44 1q22 0.0007652

LY75 2q24 0.0007652

SLC35E1 19p13.11 0.000773

DDX24 14q32 0.000773

ZNF430 19p12 0.000773

RAB2B 14q11.2 0.000773

FAM126A 7p15.3 0.000773

YBEY 21q22.3 0.000773

ZMYM2 13q11-q12 0.0007827

CNBD2 20q11.23 0.0007861

EMC3 3p25.3 0.0008242

ATP6V1G2-DDX39B /// 
DDX39B 6p /// 6p21.3 0.0008322

KDM2B 12q24.31 0.0008451

PHTF1 1p13 0.0008611

ZBED5-AS1 11p15.3 0.0008611

HIC1 17p13.3 0.000863

ANKRD11 16q24.3 0.000863

ATG7 3p25.3 0.000863

MED17 11q14 0.000869

ZFP91 11q12 0.0008787

STRADA 17q23.3 0.0008787

P4HB 17q25 0.0008913

HBD /// HBD 11p15.5 0.0008923

REL 2p13-p12 0.0008923

TXNRD1 12q23-q24.1 0.0008923

ILF3 19p13.2 0.0008923

FEM1A 19p13.3 0.0008923

PSMD11 17q11.2 0.0008923

GPATCH8 17q21.31 0.0008923

CDC5L 6p21 0.0008923

DEDD 1q23.3 0.0008923

CLASRP 19q13.3 0.0008923

PLSCR3 /// TMEM256-
PLSCR3 17p /// 17p13.1 0.0008923

GIN1 5q21.1 0.0008923

ZRANB1 10q26.13 0.0008987

CTPS2 Xp22 0.0008987

DNAJC3 13q32.1 0.0009066

WAC 10p12.1|10p12.1-p11.2 0.000907

PSMA3-AS1 14q23.1 0.000907

AP1S2 Xp22.2 0.0009173

TMEM44-AS1 3q29 0.0009285

ZNFX1 20q13.13 0.0009391

CCDC47 17q23.3 0.0009518
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TTC13 1q42.2 0.0009518

CHM Xq21.2 0.0009565

IGHG1 /// IGHG3 /// IGHM 
/// IGHV4-31 14q32.33 0.0009748

NIPSNAP3B 9q31.1 0.0009785

CSDE1 1p22 0.0009899

ANAPC4 4p15.2 0.0009899

FOXK2 17q25 0.0009978

Patterns of Gene Expression Profiles for the Genes Dis-
tinguishing the Patient Groups 

To address the hypothesis that genes dysregulated in response 
to increased WBC and distinguishing the two patient groups are 
co-regulated and have similar patterns of expression profiles, we 

subjected the 289 highly significantly differentially expressed genes 
to hierarchical clustering. The results of hierarchical clustering 
are presented in a heat map in Figure 1. In the figure, genes are 
represented in the rows and patients in the columns. The analysis 
revealed two major clusters of up (red colour) and down (blue 
colour) co-regulated genes with similar patterns of expression 
profiles. Among the most highly significant differentially expressed, 
the genes PPP1R14A, LINC01013, TMEM71, IQCN, P4HA2, 
IGF2BP3, TRAP1 and LCN8 were up regulated, whereas the genes 
PPBP, SCML1, DDX3Y, MAF, TADA2B, NDFIP1, HIC1, METRNL, NARF 
and PPP1R16B were down regulated. It is worth noting that due to 
the large number of genes in the heat map, we could not fit all the 
gene symbols in the heat map. 

Figure 1: Patterns of gene expression profiles for the 289 highly significantly differentially expressed genes distinguishing 
patients diagnosed with LWBC from patients diagnosed with HWBC, herein denoted as LOW and HIGH, respectively. Red 
indicates upregulated and blue indicates down regulated. The genes are represented in rows and patients are represented in 
columns. 

There was significant variation in patterns of gene expression 
profiles across patient samples in both the LWBC and HWBC. The 
variability in patterns of gene expression profiles within and across 
the two patient groups can be partially explained by the heteroge-
neity of the disease [6]. The groups with LWBC and HWBC contain 
patients with biologically heterogeneous subtypes of ALL and many 
cytogenetic subsets with different prognostic impact [6]. Moreover, 
because ALL is inherently a heterogeneous disease involving many 
subtypes, gene expression may be subtype specific. Our analysis in-
cluded different subtypes, under such conditions the observed out-
come may be expected and is consistent with epidemiologic litera-
ture [6]. Overall the discovery of a gene signature distinguishing the 
two patient groups suggests that the discovered genes could serve 
as clinically actionable prognostic markers. 

Gene Regulatory Networks and Signalling Pathways 
Modulating WBC

The second but equally important objective of this investigation 
was to elucidate gene regulatory networks and signaling pathways 
modulating WBC in childhood ALL. We hypothesized that genom-
ic alterations in genes distinguishing the two patient groups affect 
entire molecular networks and signaling pathways which are dys-
regulated in response to increased WBC. To address this hypoth-
esis, we performed network and pathways analysis using the 289 
genes highly dysregulated in response to increased WBC, using 
IPA. The analysis revealed 18 molecular networks with Z-scores 
ranging from 2 to 53 containing functionally related genes with 
overlapping functions. The results showing gene regulatory net-

http://dx.doi.org/10.26717/BJSTR.2019.20.003380


Copyright@ Chindo Hicks | Biomed J Sci & Tech Res | BJSTR. MS.ID.003380.

Volume 20- Issue 1 DOI: 10.26717/BJSTR.2019.20.003380

14700

works are presented in Figure 2. The molecular networks included 
genes predicted to be involved in connective tissue disorders, de-
velopmental disorder, hereditary disorder, amino acid metabolism, 
post-translational modification, small molecule biochemistry, cell 
cycle, cell death and survival and gene expression. In addition, the 
analysis revealed molecular networks containing genes predicted 

to be involved in cellular assembly and organization, cellular func-
tion and maintenance, cell-to-Cell signaling and interaction, cellular 
function and maintenance, inflammatory response, cellular devel-
opment, cellular growth and proliferation, hematological disease, 
inflammatory response, and organismal injury and abnormalities. 

Figure 2: Molecular networks containing up (red font) and down (blue font) regulated genes showing interactions among 
differentially expressed genes identified in WBC analysis. The solid lines indicate functional relationships and overlapping 
functions. The black font indicates IPA generated genes functionally related to input genes.

Analysis of upstream regulators in network regulation revealed 
KLF3, FOXN3, SGPP2 and FOLR1. In addition to evaluation of genes 
in the networks for the molecular functions, biological processes 
and cellular components in which they are involved, we also eval-
uated them for expression. The results are presented in Figure 2 
for genes with ≥3 interactions. In Figure 2, upregulated genes are 
represented in red fonts and down regulated genes in blue font. The 
analysis revealed up and down regulated genes interacting in gene 
regulatory networks Figure 2. The genes PP1, S100A4, SPICE1, 
TRAP1 and TCTN1 were upregulated whereas as the genes PHF12, 
SIN3B, FOXK2, CUX1, RAF, RAF1, IKB, REL, NFKBIB, HSPA9, HSP70, 
DNAJC3 and DNAJB11 were up regulated (Figure 2). Note that the 
analysis revealed many up and down regulated genes in network 
analysis, but due to filtering of the networks to remove genes with 
spurious interactions only a small number of up and down regulat-
ed genes are presented here. Many of the discovered genes in the 
networks are involved in the molecular mechanisms of cancer. 

To gain insights about the broader biological context in which 
the differentially expressed genes operate and to discover potential 

targetable pathways, we performed pathway analysis. The results 
of pathway analysis are presented in Figure 3. In the Figure, only 
the pathways found to be significant as determined by the log p-val-
ues as shown by the threshold yellow vertical line are presented. 
Pathways analysis revealed many important signalling pathways 
dysregulated in response to HWBC (Figure 3). The most highly sig-
nificant (-log(p-value > 1.30)) Increased signalling pathways were: 
protein ubiquitination, NRF2-mediated oxidative stress response, 
FGF, AMPK, CD40, Erythropoietin, JAK/STAT, B cell receptor, STAT3, 
IL-12, Role of JAK1, JAK2 and TYK2 interferon and P53 signalling 
pathways (Figure 3). The analysis confirmed our hypothesis that 
genomic alterations in genes distinguishing patients diagnosed 
with LWBC from patients diagnosed with HWBC affect entire mo-
lecular networks and signaling pathways. As discussed below in the 
discussion section, the discovered signaling pathways have been 
implicated in childhood ALL, and thus have the promise to serve as 
potential therapeutic targets or could be used for the development 
of novel therapeutics. 
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Figure 3: The topmost highly significant signalling pathways modulating WBC. Y-axis shows the names of pathways ranked 
by log p-value. The x-axis (upper) shows the log p-values indicating the level of significance. The vertical yellow line indicates 
the threshold levels above which the signalling pathway is declared significant.

Discussion 
Historically WBC in peripheral blood at diagnosis has been 

used as a prognostic marker in childhood ALL [6,7,10,11]. A key 
knowledge gap and critical unmet need has been the elucidation 
of the molecular mechanisms and biological pathways modulating 
WBC. Here we used transcription profiling comparing gene 
expression levels between patients diagnosed with LWBC and 
patients diagnosed with HWBC to address this knowledge gap 
and unmet need. The investigation revealed a molecular signature 
distinguishing patient diagnosed with LWBC from those diagnosed 
with HWBC. Additionally, the analysis revealed multiple gene 
regulatory networks and signalling pathways dysregulated in 
response to increased WBC. We discuss the significance of these 
findings in the context of potential clinical applications. 

Prognostic Signature

 The discovery of a gene signature distinguishing patients 
diagnosed with LWBC from patients diagnosed with HWBC suggests 

that transcription profiling could be used for risk stratification 
of ALL patients to identify patients at high risk who could be 
prioritized for intensified treatment. This could have significant 
impact considering that patients with HWBC in peripheral blood 
≥200x109/L at diagnosis constitute 5-8% of all childhood ALL 
patients and are known to have significantly lower survival 
rates [6,12]. Prioritization of patients with HWBC for intensified 
treatment could lead to improved outcomes since this group of 
patients fare less well in outcomes [25]. 

Guiding Therapeutic Decisions

One of the lingering questions by clinicians has been to decide 
whether maintenance therapy for childhood ALL should be revised 
such that drug doses are adjusted by white blood cell, neutrophil, or 
lymphocyte counts [10]. This investigation addressed this question 
and provides a rational basis for adjusting therapy by WBC. That 
could be achieved by identifying the patients with HWBC who could 
be prioritized for intensified treatment and the genes modulating 
WBC levels which could serves as prognostic markers. 
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Complementing Current Treatment Protocols

Current risk stratification and treatment algorithms incorporate 
age, sex, WBC, degree of central nervous system involvement, 
established cytogenetic alterations, and measurement of levels of 
Marginal Residue Disease (MRD)  at early time points during therapy 
[26-28]. However, although modulation of treatment intensity 
based on MRD levels has been an important factor in improving 
outcomes of therapy for patients with childhood ALL [26,29], the 
genomic features modulating MRD such as IKZF1 alterations and 
Ph-like ALL have been associated with poor outcome in many 
studies [30-31]. Importantly, their ability to refine prognosis in 
studies incorporating intensive therapy and measurement of MRD 
has varied between studies and cohorts [32-34]. Therefore, new 
genomic information such as genes dysregulated in response to 
HWBC could be used as prognostic markers to complement the 
information in current clinical algorithms.

Signalling Pathways as Potential Therapeutic Targets

In this study, we discovered multiple signalling pathways 
implicated in childhood ALL, including protein ubiquitination, 
NRF2-mediated oxidative stress response, FGF, AMPK, CD40, 
Erythropoietin, JAK/STAT, B cell receptor, STAT3, IL-12, Role of 
JAK1, JAK2 and TYK2 interferon and P53 signalling pathways. The 
significance of these findings is that these pathways could serve as 
potential therapeutic targets and or targets for the development of 
novel therapeutics. The involvement of ubiquitination signalling 
pathway has clinical significance because ALL cells have been 
shown to be sensitive to disturbances in protein homeostasis 
induced by proteasome deubiquitinate inhibition [35]. The FGF 
receptor signalling pathway is recurrently involved in leukemogenic 
processes, and recombinant ligand FGF2 has been shown to reduce 
the response to prednisolone in several BCP-ALL cell lines In vitro 
[36]. The AMPK signalling pathway is involved in programmed cell 
death, a crucial biological mechanism in the treatment of ALL [37].

 The CD40 ligand could be used for immunotherapy of childhood 
B-cell precursor ALL [38]. The erythropoietin receptor a member 
of the erythropoietin signalling pathway has been shown to be 
involved in ETV6/RUNX1-positive ALL, a subtype included in this 
study [39]. The Janus kinase (JAK)/signal transducer and activator 
of transcription (STAT) pathway is central to signalling by cytokine 
receptors, a superfamily of more than 30 transmembrane proteins 
that recognize specific cytokines and is critical in blood formation 
and immune response [40]. Most notably, STAT3 inhibitor has 
been shown to have potent antitumor activity in B-lineage ALL 
cells overexpressing the high mobility group A1 (HMGA1)-STAT3 
pathway [41]. The B cell receptor [42-43] and P53 signalling 
pathway is one of the most targeted pathways in childhood ALL 
[44-45]. In addition, these signalling pathways, we also discovered 
genes involved in cell cycle, cell proliferation and DNA replication 
and repair pathways, all of which are known to play a role in 
childhood ALL [46-48]. 

Future Research Directions

Taken together, the findings is this study have the potential to 
serve as clinically actionable molecular markers and targets for the 
development of novel therapeutics. Our investigation focused on 
use of transcription profiling. The recent surge of next generation 
sequencing technology provides the opportunity for incorporation 
of information on germline, somatic and epigenomic alterations 
into the clinical management of patients with ALL. Such information 
could be incorporated at several levels in clinical care, including at 
diagnosis, patient stratification, expanded molecular classification 
of novel subtypes of childhood ALL with clear prognostic 
importance. Moreover, sequencing is likely to have an important 
role in monitoring responses to therapy and immunotherapy by 
deeply sequencing antigen receptors. Such information could be 
integrated with transcriptome data by using gene expression levels 
as intermediate phenotypes. 

Conclusion
The investigation revealed that genetic alterations in patients 

diagnosed with HWBC and LWBC could lead to measurable changes 
distinguishing the two patient groups. The investigation further 
revealed multiple molecular networks and signalling pathways 
dysregulated in response to increased WBC. Future studies 
integrating transcriptome with other omics data are recommended 
to understand the full spectrum of childhood ALL and facilitate the 
realization of precision medicine and precision prevention. 

Data Availability
Clinical information available for ALL Phase I (B-ALL) at 

TARGET: Therapeutically Applicable Research to Generate Effective 
Treatments: https://ocg.cancer.gov/programs/target.

Gene expression data from ALL Phase I (B-ALL) is available 
at NCBI GEO database GSE11877: https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE11877
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