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Introduction 

The dental structure can be affected by physical, chemical, and 
biological events. Dental caries and trauma are the most frequent ag-
gressions involving teeth [1]. Both circumstances can trigger pulpal 
responses and culminate in inflammation and/or tissue necrosis [2]. 
The necrotic pulp can be infected by many microorganisms that can 
mediate the inflammation and destruction of the tooth surrounding 
tissues [3]. Pulp and periradicular inflammation can also trigger root 
internal/external resorption and alveolar bone resorption [4,5]. 
Thus, several pathological conditions can affect dental structures 
and, the first intervention must be based on eliminating the aggres-
sion by treating trauma and/or infection (e.g., treating caries, restor 
ing cavities, performing endodontic therapy). After tissue inflam 
mation and repair should be stimulated, and a new tissue can be 
formed or replaced. For these reasons, medicine and dentistry are  

 
in constant improvements involving machines, techniques, and 
materials for treating diseases and improving life quality. The ad-
vent of bioceramics materials increases the possibility of repara-
tive and regenerative processes in dentistry, and more precisely, in 
endodontics. The present review demonstrates a summary of bio-
ceramics properties, applications, improvements, and future direc-
tions in endodontics to maintain tooth longevity better.

Bioceramics Applications for Reparative Endodontics
Ceramics are inorganic non-metallic materials produced by 

heated raw minerals [6]. Bioceramics are materials composed of 
nanosphere particles of tricalcium silicate, tantalum pentoxide, di-
calcium silicate, monobasic, amorphous silicon dioxide, and calcium 
phosphate [7]. Bioceramic materials include alumina and zirconia, 
bioactive glass, glass ceramics, calcium silicates, hydroxyapatite, re-
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ARTICLE INFO Abstract

The advent of bioceramics materials increases the possibility of reparative and 
regenerative processes in dentistry, and more precisely, in endodontics. Bioceramics 
materials presents biocompatibility, bioactivity, resistance to leakage, sealing ability, 
and biomineralization activity. Mineral trioxide aggregate (MTA) is a gold standard 
bioceramic material indicated for reparative procedures presenting high clinical 
success. MTA is used for pulp capping, pulpotomy, apexification, perforation, root 
resorption repair, regenerative endodontics, and apical surgery. The emergence of 
MTA demonstrated great potential in endodontic therapies, and modifications and 
improvements of this bioceramic gave rise to many other materials. New bioceramic 
materials are now available in several countries with distinct compositions. Although 
there is a concern regarding the modification of compounds and formulation of 
bioceramic materials for reaching better properties, distinct products produce the same 
effects of reduced leakage, biological activity, sealing ability, marginal adaptation and 
bridge formation. The biological properties of bioceramic materials are well defined in 
literature, but new formulations must be evaluated in longitudinal clinical cases, and 
systematic reviews and meta-analysis are needed to compare these products better. 
The present review demonstrates a summary of bioceramics properties, applications, 
improvements, and future directions in endodontics to maintain tooth longevity.

https://biomedres.us/
http://dx.doi.org/10.26717/BJSTR.2020.24.004059


Copyright@ Stella Maris de Freitas Lima | Biomed J Sci & Tech Res | BJSTR. MS.ID.004059.

Volume 24- Issue 3 DOI: 10.26717/BJSTR.2020.24.004059

18307

sorbable calcium phosphates, and radiotherapy glasses [8]. These 
materials presents biocompatibility [9], bioactivity [10], resistance 
to leakage, sealing ability [11], and biomineralization activity [12]. 
The presence of calcium silicate in these materials can reduce in-
flammation and induce tissue repair [13]. Calcium phosphate and 
bioactive glass induce the formation of hard tissue [14]. In addition, 
bioceramic materials contribute to tissue repair once it stimulates 
the secretion of morphogenetic cells, proteins, and growth factors 
such as bone morphogenetic protein and transforming growth fac-
tor-beta 1 [12]. Endodontic applications for bioceramic materials 
for reparative purposes demands several physicochemical proper-
ties (short setting time, high alkaline pH and calcium ion release, 
high mechanical strength, high radiopacity, moderate flow, low po-
rosity, and solubility) and also biological properties (biocompatibil-
ity, induction of pulp cell differentiation, and antibacterial activity) 
to ensure its effectiveness [15,16]. 

However, current products commercially available do not 
demonstrate all these desirable properties, but there are products 
with favorable clinical results. Mineral trioxide aggregate (MTA) 
is a gold standard bioceramic material indicated for reparative 
procedures presenting high clinical success [17]. MTA was first 
cited in the 1990s as a calcium silicate cement [18]. Ever since, MTA 
is used for pulp capping, pulpotomy, apexification, perforation, root 
resorption repair, regenerative endodontics, and apical surgery 
[19]. MTA  is a biocompatible and sealing material that can induce 
tissue repair (bone and dentin) [20]. The recommendations for 
bioceramics application involve repair or regeneration of pulp 
tissue, periodontal tissues and also dentin, and bone tissues. MTA is 
recommended for direct pulp capping and pulpotomy procedures 
as a material to cover exposed tissue and act as a barrier.  The direct 
contact of MTA with pulp tissue can stimulate the healing and repair 
of the pulp through the induction of dentin bridge formation [21]. 

Bioceramics as MTA is indicated for regenerative endodontic 
therapy due to its potential to assist root development. The ability to 
seal, induce cell proliferation, differentiation, and biomineralization 
makes these materials the most suitable for blood clot top-sealing 
[22]. MTA allows adhesion, supports cell proliferation, and induce 
mesenchymal stem cell migration [23]. MTA is also recommended 
for the repair of areas where periodontal communication occurs 
(e.g., perforations and root-end filling) [21]. This recommendation 
is based on the properties of biocompatibility, dimensional stability, 
and sealing [24]. Indeed, MTA can block communications of the 
root canal and surrounding tissues. 

The first commercial formulation of MTA was developed as a 
gray powder. However, gray MTA was developed into white MTA to 
overcome tooth discoloration [25]. Tooth discoloration occurs due 
to the presence of bismuth oxide, a radiopacifier that can produce 
metallic bismuth and oxygen [26,27]. Other disadvantages of MTA 
include long setting time, difficulties in handling, and high cost 
[13,28]. In addition, its properties also depend on manipulation. 
The ratio powder/water and entrapped air during mixing can be 
interfering and contribute to the waste of material [18].

Bioceramics Evolution in Endodontics
Over the years, many materials have been recommended to 

induce tissue repair of dental and periapical tissues (e.g., eugenol 
zinc oxide cements, glass ionomer cement, composite resins, 
amalgam, gutta-percha, calcium hydroxide) [29]. The emergence 
of MTA demonstrated great potential in endodontic therapies, and 
modifications and improvements of this bioceramic gave rise to 
many materials. New bioceramic materials are available in several 
countries with distinct compositions. Table 1 demonstrates some 
examples of bioceramic materials similar to MTA. Endosequence 
Bioceramic Root Repair Material (Brasseler, Savannah, USA) was 
developed as a premixed cement into a syringeable fast set putty to 
improve manipulation better and discoloration disadvantages [25]. 
Endosequence contains zirconium dioxide as a radiopacifier that 
do not form a precipitate in contact with collagen [27]. However, 
results regarding its potential of discoloration are distinct [30]. 
RetroMTA (BioMTA, Seoul, Korea) also presents a modification 
on its composition compared to MTA and do not present Portland 
cement, and used hydraulic calcium zirconia as radiopacifier [31]. 
This product has calcium carbonate and may present fast setting 
time (3 minutes) compared to MTA but it still demonstrated some 
discoloration potential [32]. Generex A (Dentsply Tulsa, Tulsa, 
USA) is similar to ProRoot MTA (Dentsply Sirona, New York, 
USA), but is mixed with gels instead of water [33]. Some studies 
demonstrated that tricalcium silicate from Generex A stimulates 
osteoblast growth and contributes to the formation of bone 
apatite in a similar manner of MTA [33,34]. Ceramicrete-D (Tulsa 
Dental Specialties, Argonne, USA) is composed of hydroxyapatite 
powder, phosphosilicate ceramics, and radiopaque cerium oxide, 
although it may also contain bismuth oxide as a radiopacifying 
agent [34,35]. It demonstrated sealing ability and alkalinity [35], 
handling properties similar to ProRoot MTA (Dentsply Sirona, 
New York, USA) and setting time of 150 minutes [33]. However, its 
biocompatibility is still controversial [34]. 

http://dx.doi.org/10.26717/BJSTR.2020.24.004059


Copyright@ Stella Maris de Freitas Lima | Biomed J Sci & Tech Res | BJSTR. MS.ID.004059.

Volume 24- Issue 3 DOI: 10.26717/BJSTR.2020.24.004059

18308

Table 1: Bioceramic materials from distinct countries and with distinct composition and formulations.

Material Manufacturer Composition Radiopacifier

ProRoot MTA Dentsply Sirona (New York, USA) Bismuth oxide, tricalcium silicate, dicalcium silicate, 
tricalcium aluminate and calcium sulfate Bismuth oxide

MTA Angelus
Angelus

(Londrina, Brazil)
Tricalcium silicate, dicalcium silicate, tricalcium aluminate, 

calcium oxide, bismuth oxide Bismuth oxide

MTA Repair HP Angelus (Londrina, Brazil) Tricalcium silicate, dicalcium silicate, tricalcium aluminate, 
calcium oxide, calcium tunsgate liquid: water and plasticizer Calcium tunsgate

Generex A Dentsply Tulsa (Tulsa, USA)

Bismuth oxide, tricalcium silicate, dicalcium silicate, and 
tricalcium aluminate with

a mixing gel containing sodium lauryl sulfate and other 
undisclosed ingredients

Bismuth oxide

Ceramicrete-D Tulsa Dental Specialties, (Argonne, 
USA)

Phosphosilicate ceramic, hydroxyapatite, cerium oxide, 
deionized water Cerium oxide

Biodentine Septodont (Saint-Maur-desFosses, 
France)

Tricalcium silicate, dicalcium silicate, calcium carbonate, 
calcium oxide, iron oxide and zirconium oxide Zirconium oxide

EndoSequence Root Repair 
Material Brasseler, (Savannah, USA) Calcium silicate, monobasic calcium phosphate, zirconium 

oxide, Tantatum oxide, filer agent Zirconium oxide

Endosequence BC Root 
Repair Material Fast Set 

Putty
Brasseler, (Savannah, USA) Zirconium oxide, calcium silicate, monobasic calcium 

phosphate, calcium hydroxide and thickening agents Zirconium oxide

RetroMTA BioMTA, (Seoul, Korea)
Calcium carbonate, silicon dioxide, aluminium oxide,

calcium zirconia complex
Calcium zirconia 

complex

TotalFill BC Root Repair 
Material (RRM) FKG (Brasseler, Savannah, USA) Calcium silicates, calcium phosphate monobasic, zirconium 

oxide, tantalum oxide and thickening agents Zirconium oxide

NeoMTA Plus Avalon Biomed (Inc. Bradenton, 
USA)

Tricalcium silicate, dicalcium silicate, and tantalum oxide 
liquid: water and proprietary polymers Tantalum oxide

Biodentine (Septodont, Saint-Maur-desFosses, France) is 
composed of a mixture of tricalcium silicate, dicalcium silicate, 
calcium carbonate, iron oxide, and zirconium oxide, and a 
water-soluble polymer calcium chloride [36]. The radiopacity is 
attributed to zirconium oxide, but it might not provide a significant 
radiographic contrast [37,38]. Biodentine presents a short setting 
time (12 minutes) due to the presence of smaller particles, and the 
use of calcium chloride, an accelerator of chemical reactions [28]. 
This material releases calcium hydroxide induces restorative dentin 
synthesis, and also demonstrated antimicrobial activity [39,40]. 
Total Fill BC Root Repair Material (RRM, FKG Brasseler, Savannah, 
USA) is based on calcium phosphate, possess prolonged setting time 
(4 hours) but presented some limitations of handling and sealing 
ability compared to ProRoot MTA (Dentsply Sirona, New York, 
USA) [41]. NeoMTA Plus (Avalon Biomed, Inc. Bradenton, USA) is 
a tricalcium silicate, dicalcium silicate, and calcium sulfate powder 
mixed with a water-based gel. This product is based on tantalum 
oxide as a radiopacifying agent and possesses prolonged setting 
time for a prolonged effect of calcium and hydroxyl ions release 
[42]. There are other bioceramic materials available in the market 
with similar compositions and properties. Although there is a 
concern regarding the modification of compounds and formulation 
of bioceramic materials for reaching better properties, distinct 

products produce the same effects of reduced leakage [24,43], 
biological activity [14,44], sealing ability, marginal adaptation [41] 
and bridge formation [7].

Future Directions
A great vast of studies regarding MTA and other bioceramic 

materials as regenerative materials for endodontics demonstrated 
its effectiveness. However, the emergence of new biomaterials 
is needed in dentistry, aiming to prolong tooth life expectancy 
and also systemic life quality. The improvements of formulation 
(e.g., the premixed formulation in a syringe, putty formulation) 
consist of significant advancement and also the concerns 
regarding tooth discoloration and compound modifications. 
However, manufacturers and researchers need to attend cases of 
reintervention were the removal of these materials is needed. In 
addition, high costs also must be a great concern to disseminate 
the beneficial use of bioceramics in daily practice better. The 
biological properties of bioceramic materials are well defined in 
many in vitro and in vivo studies, but new formulations must be 
evaluated in longitudinal clinical cases, and systematic reviews and 
meta-analysis are needed to compare these products better. Finally, 
several products present effective results even when compared to 
gold standard MTA, and the bioceramic choice should be based on 
professional experience [45].
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