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Introduction
Glucocorticoids (GCs), corticosterone in rodents and cortisol 

in humans are endogenous stress hormones that exert key  

 
physiological functions [1] on various tissues [2] including liver 
[3] and skeletal muscle [4].  GCs affect almost all organs and 

ARTICLE INFO ABSTRACT

Glucocorticoids (GCs) are a class of stress hormones that play a large number of 
biological actions in the body. The levels of GCs regulated by the intracellular enzyme 
11β-hydroxysteroid dehydrogenases (11β-HSD 1 & 2) and are associated with the 
pathogenesis of metabolic syndrome. Here we aimed to investigate effect of Gum Arabic 
(GA) on GCs plasma corticosterone concentrations and its metabolic enzymes gene 
expression in mice. In the present study, 40 female CD-1 mice of 90 days old were randomly 
divided into two groups (20 of each group). Control group and GA group offered GA in 
the form of drink (10% w/v) for 15 weeks. GA in drinking water significantly (P<0.05) 
decreased food intake, body weight associated with reduction of visceral adipose tissue. 
GA supplementation significantly (P<0.01) decreased blood glucose, total cholesterol, and 
very low-density lipoprotein (VLDL) whereas increased high-density lipoprotein (HDL) 
concentrations compared to the control. However, supplementation of GA did not change 
triglycerides or very LDL. Interestingly, GA significantly (P<0.05) decreased plasma 
corticosterone associated with downregulation of hepatic 11β-HSD1 and glucocorticoid 
receptor (GR) mRNA expression compared to the control. Conversely, the treatment 
of GA increased hepatic 11β-HSD2 mRNA expression. In addition, the treatment of GA 
significantly (P<0.05) decreased muscular 11β-HSD1 compared to the control. No 
changes were observed in muscular GR and mineralocorticoid receptor. In conclusion, 
GA may enhance metabolic disorders through modification of hepatic 11β-HSDs mRNA 
expression which may ameliorate metabolic disorder complications. Further studies 
required to elucidate the molecular mechanisms of GA on GCs.
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tissues in the body [5], regulating various physiological processes 
[6] including stress response [7], immune response [8], energy 
metabolism [9], cell proliferation [10], skeletal muscle growth 
[11], and reproduction [12]. GCs exert their action through the 
glucocorticoid receptor (GR) [13], which is a transcription factor 
that belongs to the superfamily of nuclear hormone receptors 
[14]. GR acts via different mechanisms [15,16], one of the major 
mechanisms is transcriptional regulation of its primary target 
genes through genomic glucocorticoid response elements thereby 
directly binding to DNA or tethering onto other DNA-binding 
transcription factors [17]. Their secretion is mainly regulated by 
the hypothalamic-pituitary-adrenal axis [18].

The bioactivity of GCs is regulated via the intracellular 
metabolism involving 11β-hydroxysteroid dehydrogenases 
(11β-HSDs) and 20-hydroxysteroid dehydrogenase (20HSD) 
[19]. Elevations of GCs modify metabolic homeostasis such as 
hypoglycemia [20], infections [21], trauma [22], ambiguous 
temperature [23] or cold and stressful situations [24]. 11β-HSD 
type 2 catalyzes the interconversion of inactive and active GCs 
[25]. catalyzes the production of active corticosterone (CORT) 
from 11-dehydrocorticosterone in rodents, including in liver [26] 
and muscles [27]. Deregulation regulation of these enzymes has 
been associated various metabolic disorders including obesity 
[28], diabetes [29], hypertension [30], and cardiovascular disease 
[31]. Overexpression of 11β-HSD1 in the liver [32] or muscle [33] 
results in increased GCs action [34] and insulin resistance [35], 
while targeted downregulation of 11β-HSD1 protect against insulin 
resistance [29]. The inhibition of 11β-HSD1 decreases intracellular 
GCs concentrations [36] and thus enhances insulin sensitivity both 
in murine and mice [36].

On the other hand, the increased activity of 11β-HSD type 2 
resulted in tissue-specific conversion of active cortisol to inactive 
cortisone [37], thereby decreasing the local of active GCs levels. 
Deregulation of HSD2 enzyme activity has been associated with 
a number of metabolic diseases [38]. In addition, inhibition of 
11βHSD type 2 has been obviously shown to induce a congenital 
or acquired syndrome of mineralocorticoid exposure [27], thus 
contribute to essential hypertension [30].

Gum Arabic (GA), an edible dried sticky exudate from 
Acacia seyal and Acacia senegal is rich in non-viscous soluble 
fibers [39]. Pharmacologically, GA has been confirmed to have 
a number of therapeutic benefits including hypoglycemic [40], 
hypocholesterolemic [41] immunomodulatory [42], antioxidant 
[43], antiobesity [44], and many other health beneficial [45].  In 
our pervious publication, we reported that GA decreased visceral 
adipose tissue which was associated with downregulation of 
11β-Hydroxysteroid dehydrogenase type I in the liver and muscles 
of mice [46].  To our knowledge, the effect of GA on stress hormone 
levels is not reported. Therefore, here we hypothesized that the 
supplementation of GA in the form of drinking water may alter 

plasma CORT levels in mice. In addition, the alteration in plasma 
CORT concentration by GA administration may associate with 
changes in glucocorticoid metabolic enzymes gene and mRNA in 
liver and muscle of mice. Moreover, it remains unknown whether 
the changes in 11β-HSD type 1 and type 2 may be linked with 
changes in glucocorticoid receptor (GR) and mineralocorticoid 
receptor (MR) gene mRNA expression. 

Materials and Methods

Animals and Experimental Design 

Forty female albino laboratory mice (age, 90 days) old were 
obtained from Sudanese National Research Center and housed in 8 
plastic cages (each containing 5 mice) in a room kept at 25 C with a 
12-h light and dark cycle. The animals were allowed to access freely 
to a commercial pelleted diet for the adaptation and drinking water 
throughout the experiment at least for one weekday. After 7 days of 
adaptation, the animals were divided into two groups of 20 mice in 
each group. Control group and GA group. GA group was provided 
drinking water containing GA whereas; the control group was given 
tape water. These mice received 0.5% of GA aqueous solution as 
drinking water for 7 days to adapt GA, and then 10% solution for 
a further 15 weeks consecutively. The control group was remained 
on the same drinking water as in the acclimatization. Body weight 
and food consumption were recorded throughout the period of the 
experiment. On day 105, the mice were killed.  Liver and visceral 
adipose tissues were dissected and weighed. The tissue and blood 
samples were collected and stored at-80°C.

Blood Lipid Profile Biochemistry

Plasma lipids biochemistry including total cholesterol, 
triglycerides, HDL, VLDL, and LDL were determined using 
commercially assay kits according to the manufacturers’ 
instructions (Nanjing Jiancheng Bioengineering Company, Nanjing, 
China).

Blood Glucose Measurement

Plasma samples were obtained from blood through 
centrifugation (2,400 rpm, 20 min, and 3.5°C) and then stored 
at -20 °C until samples analyzed. Blood glucose concentrations 
were measured using assay kits according to the manufacturers’ 
instructions. (Nanjing Jiancheng Bioengineering Company, Nanjing, 
China).

Plasma Corticosterone Measurement 

After decapitation of mice, blood samples were obtained 
from the ruptured cervical blood vessels in heparinized tubes 
for corticosterone (CORT). The plasma samples were prepared 
after centrifugation (2,400 rpm, 20 min, 3.5°C) in a refrigerated 
device and frozen at –20°C until the measurement of the hormone. 
Plasma CORT levels were measured using radioimmunoassay 
method (RIA), using the CORT commercial kit according to the 
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manufacturers’ instructions (Biochem Immuno System). All plasma 
samples were dosed in the same assay, to avoid inter-assay errors. 
The lower detection limit for CORT was 0.064 ng/mL, with a 4% 
intra-assay error.

Real-time PCR and Gene Expression 

About 100 mg of liver and muscle were ground in liquid N2, 
and a portion of about 50 to 100 mg were used for extraction of 
RNA using TRIzol total RNA kit (Invitrogen, Biotechnology Co, Ltd, 
Carlsbad, CA, USA) according to the manufacturer’s instruction. Two 
approaches were taken to ensure that all the total RNA preparations 
are free of genomic DNA contamination. Firstly, total RNAs were 
treated with 10 U DNase I (Rnase Free, D2215, Takara, Japan) for 30 
min at 37°C, and purified according to the manufacturer’s protocol. 
Secondly, the primers for the reference gene were designed to span 
an intron, so any genomic DNA contamination can be reported easily 
with an extra product in the melting curves for real-time PCR. For 
liver and muscle glucocorticoid metabolic genes expression, real-
time PCR was performed in Mx3000P (Stratagene, USA) according 
to the previous publication [46].

Mock RT and No Template Controls were included to monitor 
the possible contamination of genomic and environmental DNA at 
both RT and PCR steps. The pooled sample made by mixing equal 
quantity of RT products (cDNA) from all samples was used for 
optimizing the PCR condition and tailoring the standard curves for 
each target gene, and melting curves were performed to ensure a 

single specific PCR product for each gene. The PCR products were 
sequenced to validate the identity of the amplicons. Primers specific 
11β-HSD1, 11β-HSD2, GR and MR (Table 2) were synthesized by 
Geneary (Shanghai, China). A mouse GAPDH was used as a reference 
gene for normalization purposes. The method of 2−ΔΔCt was used 
to analyze the real-time PCR data [47]. The mRNA abundances 
were presented as the fold change relative to the average level of 
the control group.

Statistical Analysis 

Descriptive statistics analysis was performed to check the 
normality and homogeneity of variances before using parametric 
analyses.  Body weight, food intake, organs weight, blood lipids 
profile, CORT, as well as the relative quantitative data of gene 
expression were analyzed by one-way ANOVA using SPSS 21.0 for 
Windows, followed by a least-significant difference (LSD) test for 
individual comparisons. A P-value ≤0.05 was considered significant.

Results

Body Weight, Food Intake Visceral Adipose Tissue 
Weight, and Liver Weight

In the present study, the supplementation of GA significantly 
(P<0.05) decreased VAT (Figure 1A) food intake (Figure 1B), 
and body weight (Figure 1C) compared to the control group. No 
significant differences were observed in liver weight regarding the 
treatment of GA (Figure 1D).

Figure 1: Effect of GA treatments on liver food intake (A) body weight (B), visceral adipose tissue (C) and liver weight (D). The 
values are the means ± SEM, n=20/group. 
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Blood Glucose Lipid Profile 

In this study, the treatment of GA significantly (P<0.05) 
decreased final blood glucose concentration compared to the 
control group. In addition, the administration of GA significantly 
(P<0.05) decreased total cholesterol (P<0.05) compared to the 

control group. Likewise, the supplementation of GA significantly 
reduced plasma LDL-c concentrations compared to the control 
group. On the other hand, the treatment of GA significantly (P<0.05) 
increased HDL-c concentrations when compared to the control 
group (Table 1). No changes were observed both in triglycerides or 
VLDL concentrations regarding GA administration.

Table 1: Effect of GA treatments on blood lipid profile and glucose concentrations.  Data were expressed as means ± S.E.M. of 20 /group. 
Different letters in the rows indicate significantly different mean values at p<0.05

Group Triglyceride (mg/dL) Total cholesterol (mg/dL) HDL (mg/dL) LDL (mg/dL) VLDL (mg/dL) Glucose (mmol/L)

Control 42.3±3.05a 74.5±3.2a 53.51±2.20a 73.43±5.60a 11.26±4.52a 8.70±.53a

Gum 33.4±1.5a 47.3±2.16 b 70.55±3.11b 31.62±4.13b 9.32±0.12a 4.30±0.50b

Plasma Corticosterone and Blood Glucose Concentrations 

In the current study, the treatment of GA significantly (P<0.05) 
decreased plasma CORT concentrations when compared to the 
control group (Figure 2A). In addition, the administration of GA 
significantly (P<0.05) decreased blood glucose compared to the 
control group (Table 1).

Figure 2: Effect of GA treatments on plasma corticosterone 
concentrations (A). The values are the means ± SEM, 
n=20/group. Bars with different letters are significantly 
different at p<0.05

Table 2: Primers sequences used for Real-time PCR

Target 
genes

Gene bank 
number Primer sequences

11β-HSD1 NM_001044751.1
F: 5′- TGCAGGTTTTCTTCGTGTGT-3′

R: 5′- GAGGAGATGACGGCAATGCT-3′

11β-HSD2 NM_008289.2
F: 5′- ATAGCCCTGGTGCCCTAGAA-3′

R: 5′- AAGGGCTGAAGAAGCCCATC-3′

GR X66367.1
F: 5′- CGTCGGGGACGGATTCTAAG-3′

R: 5′- 
AAACCGAAAAGGACGCCAGA-3′

MR NM_001083906.2
F: 5′- 

CACATAAGCAAGACAGTGGCA-3′

R: 5′- TGGTGAACCCTGTGGGAAAC-3′

GAPDH NM_008084.2
F: 5′- ACATGGTCTACATGTTCCAGTA 

-3′

R: 5′- GGAGTCTACTGGTGTCTTCA-3′

Hepatic and Muscular 11β-HSD1 and 11β-HSD2 mRNA 
Expression

Figure 3: Effect of GA treatments on hepatic 11βHSD1 and 
11βHSD2 (A), muscle 11βHSD1 and 11βHSD2 (B), hepatic 
GR and MR (C) and muscle GR and MR (D) mRNA 
expression. The values are the means ± SEM, n=20/group. 
Bars with different letters are significantly different at 
p<0.05.
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In the present study, treatment of GA significantly (P<0.05) 
decreased hepatic11β-HSD1 (Figure 3A) mRNA expression 
whereas, increased hepatic 11β-HSD2 (Figure 3A) mRNA 
expression compared to the control group.  Similarly, the treatment 
of GA significantly (P<0.05) decreased muscular 11β-HSD1 (Figure 
3B) mRNA expression but not 11β-HSD2 (Figure 3B) compared to 
the control group. 

Hepatic and Muscle GR and MR mRNA Expression

In the present study, the treatment of GA significantly (P<0.05) 
decreased hepatic GR (Figure 3C) mRNA expression when 
compared to the control group. However, no significant differences 
observed in hepatic MR (Figure 3C) mRNA expression compared 
to the control group. Likewise, no significant differences were 
observed both in muscular GR and MR mRNA expression regarding 
to the treatment of GA (Figure 3D). 

Discussion
There are several reports confirming the association between 

dietary fibre consumption and stress relief [48-50]. Gum Arabic 
(GA) is a profitable natural source of dietary fiber that reaches 
85% of its weight [51]. It has a wide spectrum of health benefits 
including oxidative stress [52], dyslipidemic [41], anti-obesity [53], 
and anti-inflammatory [54].  In the present study, administration 
of GA significantly decreased food intake associated with reduction 
in body weight and blood glucose. These findings are agreed with 
earlier reports that the treatment of GA associated with a reduction 
in food intake [36], body weight [55] and blood glucose levels [40]. 
The reduction effect of GA on food intake and body weight may be 
due to the fact that several studies confirmed that the dietary fiber 
have bulk properties [56] and viscosity [57] therefore, it promoting 
satiety [58], satiation [59, 60] and lowering body weight [61].

In addition, intake of dietary fiber associated with increases in 
satiety and decreased blood glucose levels [61].  Moreover, it was 
confirmed that supplementation of GA inhibited glucose absorption 
in intestine through interference of membrane abundance of 
sodium-glucose transporter 1 in mice [62]. Abdominal obesity is 
considered the most common signs of metabolic syndrome [63]. 
As a result, metabolic syndrome is a fatal consequence of visceral 
obesity [64].  Here we reported that supplementation of GA 
decreased visceral adipose tissue (VAT) accumulation associated 
with reduction in blood cholesterol, and VLDL. However, the 
treatment of GA increased HDL concentrations. Our findings are 
consistent with previous reports that dietary fibre decreased 
adiposity [65], lowered blood cholesterol [66] and blood VLDL levels 
[67]. A variety of mechanisms have been suggested to elucidate 
the hypercholesterolemic effect of GA [68,69]. Some reports 
suggested that the viscosity of fermentable dietary fibers in GA 
contribute significantly to lipid lowering action [65,70]. In addition, 
mechanism it was found that administration of GA increased fecal 

bile acid excretion together with decreased medication in lipid 
digestion and absorption [71].

Glucocorticoids (GCs) play a vital role in a wide array of 
physiological processes in the body. The 11β-hydroxysteroid 
dehydrogenases (11β-HSDs) enzyme catalyze interconversion of 
intracellular GC in liver [72]. Deregulations of both 11β-HSD1 and 
11β-HSD2 have been associated with several types of metabolic 
disorders [73]. In the present study, the supplementation of 
GA in drinking water downregulated hepatic and muscular 
11β-HSD1 mRNA expression associated with decreases in plasma 
corticosterone concentrations. These results are consistent 
with our previous publication showed that administration of GA 
decreased 11β-HSD1 mRNA expression in mice liver [46]. The 
downregulation of hepatic and muscular 11β-HSD1 mRNA may 
play a critical a role in the inhibition of abdominal adiposity [36] 
and blood lipid profile, thus may attenuate atherosclerosis [74]. 
Downregulation of muscular 11β-HSD1 within the muscle may 
also protect against the unfavorable effects of local inflammation 
[75]. However, the mechanism through which GA downregulates 
11β-HSD1 mRNA is unclear the.

Therefore, additional studies are essential to disclose 
such effects. 11β-HSD2 plays a crucial role in the prevention 
of inappropriate activation of the mineralocorticoid receptor 
(MR) from improper activation via GCs by inactivating GCs in 
mineralocorticoid target tissues [76]. In the present study, the 
treatment of GA upregulated hepatic 11β-HSD2 mRNA expression. 
Overexpression of hepatic 11β-HSD2 mRNA may imply the 
prevention from various metabolic disorders such as atherogenesis 
[36], hypertension [77] and proinflammatory changes [76]. 
Chronic exposure elevated levels of GCs cause metabolic disorders 
such as insulin resistance [78] elevation of fasting glucose [79] and 
development of type 2 diabetes mellitus [80]. Here we reported for 
the first time that the administration of GA decreased GR mRNA 
expression in the liver but not muscle. Downregulation of hepatic 
GR mRNA could therefore decrease the development of metabolic 
risk factors [81] such as obesity [82], cardiovascular diseases [83], 
and diabetes [84]. 

Conclusion 
We concluded that the supplementation of GA reduced food 

intake, body weight, VAT, plasma lipids profile and plasma CORT 
concentration which were associated with modification of hepatic 
11β-HSD1, 11β-HSD2 and GR mRNA expression. Thus, GA may be 
useful in the treatment of metabolic disorder related diseases that 
induced by GCs deregulation.  
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