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Mini Review
Juvenile amyotrophic lateral sclerosis (JALS) is a degenerative 

neurological disease that occurs before the age of 25, involves upper 
and lower motor neurons and progresses progressively, with earlier 
onset, more rapid progression, and severe symptoms than classical 
ALS. So far, there is no effective treatment for JALS. The pathogenesis 
of JALS is still unknown and involves genetic, environmental, 
and biological factors. With the development of gene sequencing 
technology genetic factors are still dominate pathogenesis. JALS 
pathogenic gene spectrum is different from the classical ALS. Fused 
in sarcoma (FUS), which accounts for less than 1% of the causative 
mutation in classical ALS, is more than 60% of JALS, especially 
sporadic JALS [1,2]. However, its pathological mechanism is still 
controversial. Loss of function and Gain toxicity are the two main 
hypotheses used to explain the neurone death induced by FUS-NLS 
mutations. Based on our reading and understanding, we emphasize 
more that loss function cannot be ignored. FUS is a radiosensitive 
DNA/RNA binding protein composed of 526 amino acids encoded 
by the FUS gene containing 15 exons. FUS shuttles between nucleus 
and cytoplasm and is distributed in axons, dendrites, and dendritic 
spines of neurons, which is closely related to normal function 
maintenance and plasticity of neurons. 

It consists of seven domains, including a prion-like domain 
(PRLD) located at the N-terminal, three intrinsically disordered 
Arg-gly-rich domains (RGGs), one RNA recognition motif (RRM), 
and one RNA-binding zinc finger (ZNF) and a C-terminal nuclear 
localization signal (NLS) [1]. There are more than 50 ALS-
associated FUS mutations, of which approximately 40 are located 
in nuclear localization sequences (NLS) [1]. Current research focus 
on Gain toxicity hypotheses to explain the neurone death induced 
by FUS-NLS mutations [3,4]. FUS entry into the nucleus is mediated 
by binding of its NLS sequence to the nuclear entry receptor 
TNPO1 (transportin-1, TNPO1) [5]. Deletion of NLS fragments and 
mutations in sequences can lead to FUS entry barrier and abnormal 
aggregation of cytoplasmic proteins [6]. In cytoplasm, TNPO1 also 
regulates Liquid-liquid phase separation, LLPS of FUS. FUS-NLS 
mutations disturb the liquid-liquid phase separation equilibrium, 
which is one of the mechanisms leading to abnormal cytoplasmic 
aggregation [6,7]. However, the exudation nucleus of FUS is 
independent of exudation receptor XPO1 (Exportin1,XPO1), which 
is considered to be exudation through passive diffusion, and the 
binding of newly synthesized mRNA to FUS can limit its exudation 
[8].
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It was found that the abnormal protein sequence after 
FUSR503fs (C. 1509-1510delag) mutation site can increase the 
retention of FUSR503fs in the nucleus [9]. Nucleotide sequences of 
FUS (low-Complexity Domains) [10] are anchored in the C-terminal 
domain (CTD) of RNA polymerase II (RNAPII) [11] and regulate the 
transcription of 2/3 of genes related to synaptic activity by preventing 
hyperphosphorylation of Ser2 of RNAPII [12]. FUS mutations, even 
in the nucleus, can affect the transcriptional activity of RNAPII and 
lead to some changes in biological functions [13]. Overexpression 
of nuclear FUS, rather than endogenous FUS knockdown, has been 
shown to cause neuron death, suggesting that FUS acquired nuclear 
toxicity plays an important role in the pathogenesis of ALS [14]. It 
can also bind to an active transcription region located downstream 
of the gene PolyA signaling, preferentially binding proteins involved 
in transcriptional regulation to participate in RNA level regulation 
[15]. In addition, FUS can inhibit viral replication, sarcoma cell 
proliferation, and related RNA and protein expression [16]. FUS 
can bind to RNAPII in the nucleus to regulate the transcriptional 
activity of various transcription factors [17,18]. FUS-NLS mutations 
lead to abnormal axon distribution and dysfunction of key NLS-
binding protein factors such as SMN (Survival Motor Neuron) [19] 
and reduced area of nerve endplate [20]. Therefore, functional loss 
of FUS-NLS cannot be ignored in the pathogenesis of JALS, and we 
hope that more relevant studies will be carried out.
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