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Atherosclerosis- Knowledge and Pathogenesis
Atherosclerosis (AS) is the process in which lipid particles, 

mainly oxidized LDL (Ox-LDL) accumulate in the luminal side of the 
arterial walls, then enclosed with a fibrous cap, which is composed 
of hypertrophic endothelial cells, collagen and extra-cellular matrix 
(ECM) proteins. Together, the lipid core and the surrounding fibrous 
cap form the atherosclerotic plaques, which cause progressive 
narrowing of the arterial lumen, resulting in impaired blood flow 
and oxygen supply, leading to ischemic injury in the affected organs 
[1]. Being a multifactorial process, AS is accelerated in the presence 
of several cardiovascular risk factors, such as diabetes mellitus, 
hypertension, hyperlipidemia, complex genetic susceptibility to 
the disease, and tobacco abuse. In these diseases, higher levels 
of oxidative stress (OS) occur frequently, which lead to advanced  

 
disease and a higher rate of target organ damage and disease-
related complications. OS augments the inflammatory response 
in the vascular endothelium, which results in vascular endothelial 
structural and functional damage, thus leading to accelerated AS 
[2,3].

A proof for the role of OS in the progression of AS is that 
multiple endogenous and exogenous antioxidants had been 
proven to attenuate AS progression [4-6]. Heparan sulfate 
proteoglycans (HSPGs) are macromolecules that are composed of 
glycosaminoglycan chains covalently bound to a protein core and 
are either embedded in cell membranes or located in the ECM 
[7]. HSPGs exert important functions in cell-ECM interaction [8-
10] and play key roles both in normal biologic processes [11-16] 
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as well as in several pathologic processes [7,11,12,17-23], and 
their normal structure and function are crucial for maintaining 
normal tissue structure, integrity and function [24]. Heparan 
sulfate endoglycosidase heparanase (Heparanse), the only enzyme 
in mammalians that degrades HS chains in the HSPGs [19,25-27], 
is implicated in the tight regulation of HSPG turnover, through 
both intracellular and extracellular roles [28-30]. As HSPGs exist 
in all the body organs and systems, heparanase inhibition is 
under extensive investigation in various diseases. Recent studies 
implicate heparanase in AS development and progression. In their 
study, Blich, et al. demonstrated intense staining for heparanase in 
the intima of vulnerable atherosclerotic plaques in human coronary 
arteries compared to a weak staining in stable plaques [31].

Similarly, Osterholm, et al. demonstrated a 6.6 fold increased 
heparanase mRNA levels in atherosclerotic plaques in human 
carotid arteries in comparison to non-atherosclerotic iliac arteries 
[23]. Likewise, Baker, et al. documented elevated heparanase levels 
and activity associated with coronary atherosclerosis progression 
in diabetic hyperlipidemic swine [22]. In their review, Vlodavsky, 
et al. reported in detail the role of heparanase in atherosclerosis 
and other vessel wall pathologies [32]. In line with these studies, 
we demonstrated in apolipoprotein E deficient (E0) mice that 
heparanase inhibition by PG545 (Pixatimod) significantly 
decreased serum OS and lowered plasma lipid levels [33]. In 
addition, we demonstrated in E0 mice placed on high fat diet (HFD) 
that heparanase inhibition by PG545 significantly decreased serum 

OS, along decreasing aortic wall thickness and atherosclerotic 
plaque surface area. In the same study, we demonstrated that 
PG545 significantly diminished the development of liver steatosis, 
an issue under current investigation [34].

In biochemical staining and western blotting studies, we 
demonstrated that PG545 caused significant reduction of IL-
1, TNF-α, and aKT, together with increasing FGF-2 and LC-III 
expression, reflecting the fact that heparanase inhibition resulted 
in anti-inflammatory effects, besides augmenting regeneration 
process and increased autophagy, in an attempt of the liver to 
repair injured liver tissue. All these effects, together with lowering 
serum OS and lipid levels, can be suggested as the pathogenetic 
mechanisms by which heparanase inhibition exerts the beneficial 
anti-atherosclerotic and anti-steatosis effects (Figure 1). Moreover, 
we also studied the effect of Roneparstat (SST0001) on OS, AS, and 
liver steatosis in E0 mice placed on HFD for eight weeks. SST0001 
showed metabolic effects similar to PG545 (decreased serum 
lipids levels and OS, and significantly attenuated the development 
of liver steatosis), but had no effect against the development of 
atherosclerosis in the aortas of the mice. Like PG545, also SST0001 
demonstrated neither heptotoxicity nor renal toxicity, and did 
not affect blood pressure. In contrast to PG545, which caused 
prominent weight loss in mice despite minimal effect on food 
intake, SST0001 affected neither food intake nor mice body weight 
(data not published).

Figure 1: A schematic presentation presenting a long-cut view for an artery. Endothelial cell layer are shown, with a 
magnification of the luminal endothelia cell membrane, showing components of cell wall- including embedded LDL receptors 
and heparan sulfate proteoglycan molecules, as well as heparanase molecules and intra-luminal blood cellular components.
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Heparanase Inhibition in Acute Kidney Injury
In ischemia-reperfusion acute kidney injury (AKI) rat model, 

pre-treatment with PG545 significantly attenuated the development 
of AKI, which was expressed by lower serum creatinine and blood 
urea nitrogen levels in the treated mice. Histologic studies of the 
kidneys in the sham-control mice revealed the development of acute 
tubular necrosis, with tubular lysis, loss of brush border and the 
accumulation of debris in the tubular lumen. Electron microscopy 
analyses revealed mitochondrial distortion in the sham-control 
mice, compared to normal ultrastructure of the mitochondria in 
mice pre-treated with the heparanase inhibitor [35]. 

Heparanase Inhibition in Malignant Diseases
The role of heparanase in the development of malignant 

diseases was well established, and the effect of heparanase 
inhibition in the treatment of different malignancies has been 
extensively studied. Recent studies demonstrated favorable effects 
of the heparanase inhibitor SST0001 (Roneparstat) when added to 
standard treatment protocols in patients with multiple myeloma 
[36-38] or in different kinds of human pediatric osteosarcoma and 
other sarcoma models [39,40], as well as in cases of mesothelioma 
[41] and different pediatric malignancies [42], and thus heparanase 
inhibitors are under consideration as an additional modality for 
treating malignant diseases [43-45]. 

Heparanase Inhibitors and the Coagulation System
Impaired endothelial dysfunction is an early feature of formation 

of the atherosclerotic lesion. Acute cardiac ischemic syndromes, 
such as unstable angina pectoris or myocardial infarctions, occur 
following the abrupt rupture of an atherosclerotic plaque, an 
event that leads to exposure of the highly thrombogenic lipid core 
constituents of the plaque to the intra-vascular content, resulting 
in activation of the coagulation system, which further accelerates 
the atherosclerotic plaque formation [46-48]. Heparan sulfate 
molecules play key roles in activation of the coagulation system.

In a book chapter, Nadir Y. had described in detail the role 
of heparanase in the activation of the coagulation system and 
reported increased heparanase level and activity in several clinical 
settings associated with hypercoagulability, such as in women 
using oral contraceptives, cases of diabetic foot, women at delivery, 
after orthopedic surgeries, and in patients with lung cancers and 
other malignancies [49]. Former studies have reported in detail the 
role of heparanase in increasing coagulation via three mechanisms, 
including enhancement of tissue factor activity, upregulation of 
tissue factor expression in endothelial cells, and by releasing the 
single chain polypeptide tissue factor pathway inhibitor (TFPI) 
from cell surface [50], and heparanase inhibition by peptides 
derived from TFPI-2 was proved to inhibit the procoagulant activity 
of heparanase and to attenuate sepsis in mouse model [51]. 

Conclusion
There is a large evidence regarding the involvement of 

heparanase in several disease processes, supported by the fact 
that higher heparanase levels and activity are associated with 
more advanced and complicated diseases, as was shown in 
several malignancies, diabetes mellitus, nephropathies of variable 
etiologies, and infectious and inflammatory processes. Likewise, 
several recent studies had implicated heparanase in atherosclerosis 
development and progression. Many basic science and clinical 
studies were held and others being ongoing, to explore the effect 
of heparanase inhibition on malignant diseases. Conversely, only 
few studies have reported the effect of heparanase inhibition 
on atherosclerosis formation and progression. Undoubtedly, 
heparanase inhibition exerts favorable effect towards attenuating 
atherosclerosis progression, in spite of the contradictory results 
obtained so far.

The effect of heparanase inhibition on AS is expressed by 
significant attenuation in the development of aortic atherosclerotic 
plaques and reducing aortic wall thickness, through several 
possible mechanisms, which include lowering of serum lipid values, 
decreasing serum oxidative stress, and anti-inflammatory effects. 
However, lack of pathogenic mechanism and effect of long term use 
of heparanase inhibitors in humans limit the possibility to apply 
using heparanase inhibitors in humans for prevention or treating 
atherosclerosis, and further research is absolutely warranted. In 
the literature, additional heparanase inhibitors are available, where 
their effect was not examined neither on AS nor on liver steatosis. In 
face of the existing non-consistent results demonstrated so far, it is 
highly warranted that the effect of additional heparanase inhibitors 
on atherosclerosis prevention and treatment be studied.
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